Skip to main content

Advertisement

Log in

Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The reinforcing effects of cocaine are mediated by the mesolimbic dopamine system. Behavioral and neurochemical studies have shown that the cholinergic muscarinic M4 receptor subtype plays an important role in regulation of dopaminergic neurotransmission.

Objectives

Here we investigated for the first time the involvement of M4 receptors in the reinforcing effects of cocaine using chronic intravenous cocaine self-administration in extensively backcrossed M4 receptor knockout (M4 −/−) mice.

Methods

We evaluated acquisition of cocaine self-administration in experimentally naïve mice. Both cocaine self-administration and food-maintained operant behavior were evaluated under fixed ratio 1 (FR 1) and progressive ratio (PR) schedules of reinforcement. In addition, cocaine-induced dopamine release and cocaine-induced hyperactivity were evaluated.

Results

M4 −/− mice earned significantly more cocaine reinforcers and reached higher breaking points than their wild-type littermates (M4 +/+) at intermediate doses of cocaine under both FR 1 and PR schedules of reinforcement. Under the PR schedule, M4 −/− mice exhibited significantly higher response rates at the lowest liquid food concentration. In accordance with these results, cocaine-induced dopamine efflux in the nucleus accumbens and hyperlocomotion were increased in M4 −/− mice compared to M4 +/+ mice.

Conclusions

Our data suggest that M4 receptors play an important role in regulation of the reward circuitry and may serve as a new target in the medical treatment of drug addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, Breininger ML, Gentry PR, Yin H, Jadhav SB, Shirey JK, Conn PJ, Lindsley CW (2008) Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther 327(3):941–953

    Article  PubMed  CAS  Google Scholar 

  • Caine SB, Negus SS, Mello NK (1999) Method for training operant responding and evaluating cocaine self-administration behavior in mutant mice. Psychopharmacol (Berl) 147:22–24

    Article  CAS  Google Scholar 

  • Caine SB, Negus SS, Mello NK, Patel S, Bristow L, Kulagowski J, Vallone D, Saiardi A, Borrelli E (2002) Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci 22(7):2977–2988

    PubMed  CAS  Google Scholar 

  • Caine SB, Thomsen M, Gabriel KI, Berkowitz JS, Gold LH, Koob GF, Tonegawa S, Zhang J, Xu M (2007) Lack of self-administration of cocaine in dopamine D1 receptor knock-out mice. J Neurosci 27(48):13140–13150

    Article  PubMed  CAS  Google Scholar 

  • Camps M, Kelly PH, Palacios JM (1990) Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species. J Neuronal Transm Gen Sect 80:105–127

    Article  CAS  Google Scholar 

  • Chan WY, McKinzie DL, Bose S, Mitchell SN, Witkin JM, Thompson RC, Christopoulos LS, Birdsall NJM, Bymaster FP, Felder CC (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. PNAS 105:10978–10983

    Article  PubMed  CAS  Google Scholar 

  • Chen SR, Wess J, Pan HL (2005) Functional activity of the M2 and M4 receptor subtypes in the spinal cord studied with muscarinic acetylcholine receptor knockout mice. J Pharmacol Exp Ther 313(2):765–770

    Google Scholar 

  • Chiamulera C, Epping-Jordan MP, Zocchi A, Marcon C, Cottiny C, Tacconi S, Corsi M, Orzi F, Conquet F (2001) Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 4(9):873–874

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Morelli M, Consolo S (1994) Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci 17:228–233

    Article  PubMed  Google Scholar 

  • Fink-Jensen A, Fedorova I, Wörtwein G, Woldbye DP, Rasmussen T, Thomsen M, Bolwig TG, Knitowski KM, McKinzie DL, Yamada M, Wess J, Basile A (2003) Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res 74(1):91–96

    Article  PubMed  CAS  Google Scholar 

  • Franklin KJB, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 19:177–181

    Article  PubMed  CAS  Google Scholar 

  • Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng CX, Wess J (1999) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:10483–10488

    Article  PubMed  CAS  Google Scholar 

  • Hulme EC, Birdsall NJM, Buckley N (1990) Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 30:633–673

    Article  PubMed  CAS  Google Scholar 

  • Ince E, Ciliax BJ, Levey AI (1997) Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27:357–366

    Article  PubMed  CAS  Google Scholar 

  • Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia 13:222–257

    Article  PubMed  CAS  Google Scholar 

  • Jeon J, Dencker D, Wörtwein G, Woldbye DPD, Cui Y, Davis AA, Levey AI, Schütz G, Sager TN, Mørk A, Li C, Deng C, Fink-Jensen A, Wess J (2010) A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulation dopamine-dependent behaviors. J Neurosci 30(6):2396–2405

    Article  PubMed  CAS  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Dumont M, Staufenbiel M, Strazielle C (2005) Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen. Behav Brain Res 157:91–98

    Article  PubMed  CAS  Google Scholar 

  • Levey AI (1993) Immunological localization of m1–m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441–448

    Article  PubMed  CAS  Google Scholar 

  • Olianas MC, Adem A, Karlsson E, Onali P (1996) Rat striatal muscarinic receptors coupled to the inhibition of adenylyl cyclase activity: potent block by the selective m4 ligand muscarinic toxin 3 (MT3). Br J Pharmacol 118:283–288

    PubMed  CAS  Google Scholar 

  • Piaza PV, Deroche-Gamonent V, Rouge-Pont F, Le Moal M (2000) Vertical shifts in self-administration dose–response functions predict a drug-vulnerable phenotype predisposed to addiction. J Neurosci 20(11):4226–4232

    Google Scholar 

  • Rocha BA, Ator R, Emmett-Oglesby MW, Hen R (1997) Intravenous cocaine self-administration in mice lacking 5-HT1B receptors. Pharmacol Biochem Behav 57(3):407–412

    Google Scholar 

  • Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B, Miller GW, Caron MG (1998a) Cocaine self-administration in dopamine-transporter knockout mice. Nat Neurosci 2:132–137, Erratum in: Nat Neurosci 1(4):330

    Google Scholar 

  • Rocha BA, Scearce-Levie K, Lucas JJ, Hiroi N, Castanon N, Crabbe JC, Nestler EJ, Hen R (1998b) Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 939(6681):175–178

    Google Scholar 

  • Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ, Martin JE (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8:711–713

    Article  PubMed  CAS  Google Scholar 

  • Rogers DC, Jones DN, Nelson PR, Jones CM, Quilter CA, Robinson TL, Hagan JJ (1999) Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains. Behav Brain Res 105:207–217

    Article  PubMed  CAS  Google Scholar 

  • Shirey JK, Xiang Z, Orton D, Brady AE, Johnson KA, Williams R, Ayala JE, Rodriguez AL, Wess J, Weaver D, Niswender CM, Conn PJ (2008) An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat Chem Biol 4:42–50

    Article  PubMed  CAS  Google Scholar 

  • SPSS Inc. (2004) SPSS base version 13.0 user manual. SPSS Inc., Chicago

  • Sugaya K, Clamp C, Bryan D, McKinney M (1997) mRNA for the m4 muscarinic receptor subtype is expressed in adult rat brain cholinergic neurons. Brain Res Mol Brain Res 50:305–313

    Article  PubMed  CAS  Google Scholar 

  • Thomsen M, Caine SB (2005) Chronic intravenous drug self-administration in rats and mice. Curr Protoc Neurosci Chapter 9: Unit 9.20

  • Thomsen M, Caine SB (2006) Cocaine self-administration under fixed and progressive ratio schedules of reinforcement: comparison of C57BL/6J, 129X1/SvJ, and 129 S6/SvEvTac inbred mice. Psychopharmacol (Berl) 184:145–154

    Article  CAS  Google Scholar 

  • Thomsen M, Woldbye DP, Wortwein G, Fink-Jensen A, Wess J, Caine SB (2005) Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci 25:8141–8149

    Article  PubMed  CAS  Google Scholar 

  • Thomsen M, Hall FS, Uhl GR, Caine SB (2009a) Dramatically decreased cocaine self-administration in dopamine but not serotonin transporter knock-out mice. J Neurosci 29:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Thomsen M, Han DD, Gu HH, Caine SB (2009b) Lack of cocaine self-administration in mice expressing a cocaine-insensitive dopamine transporter. J Pharmacol Exp Ther 331(1):204–211

    Article  PubMed  CAS  Google Scholar 

  • Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J, McKinzie DL, Felder C, Nomikos GG (2004) M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 18:1410–1412

    PubMed  CAS  Google Scholar 

  • Vilaro MT, Mengod G, Palacios JM (1993) Advances and limitations of the molecular neuroanatomy of cholinergic receptors: the example of multiple muscarinic receptors. Prog Brain Res 98:95–101

    Article  PubMed  CAS  Google Scholar 

  • Weiner DM, Levey AI, Brann MR (1990) Expression of muscarinic acetylcholine and dopamine receptor messenger-RNAs in rat basal ganglia. Proc Natl Acad Sci USA 87:7050–7054

    Article  PubMed  CAS  Google Scholar 

  • Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423–450

    Article  PubMed  CAS  Google Scholar 

  • Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1996) Neurobiology of addiction. Curr Opin Neurobiol 6:243–251

    Article  PubMed  CAS  Google Scholar 

  • Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB (1993) Development of antisera selective for M4 and M5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol 43:149–157

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Ivan Nielsen Foundation and the Lundbeck Foundation supported the present work. We thank Pernille Clausen for expert technical assistance.

Disclosure/conflict of interest

All the authors declare that they have nothing to disclose and no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Fink-Jensen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

Behavioral phenotype assessment, primary screen (SHIRPA). Body weight, body length, and locomotor activity (bb, beam breaks) are group means ± SEM. Other data are group medians with range in parenthesis. Groups sizes, n = 1921. There was no significant effect of genotype in any of the measures. (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, L.S., Thomsen, M., Weikop, P. et al. Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice. Psychopharmacology 216, 367–378 (2011). https://doi.org/10.1007/s00213-011-2225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2225-4

Keywords

Navigation