Skip to main content

Advertisement

Log in

Simultaneous anhedonia and exaggerated locomotor activation in an animal model of depression

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Anhedonia, or hyposensitivity to normally pleasurable stimuli, is a cardinal symptom of depression. As such, reward circuitry may comprise a substrate with relevance to this symptom of depression.

Objectives

Our aim was to characterize in the rat changes in the rewarding properties of a pharmacological and a natural stimulus following olfactory bulbectomy (OBX), a pre-clinical animal model of depression.

Methods

We measured amphetamine enhancement of brain stimulation reward, changes in sucrose intake, as well as striatal cAMP response element binding protein (CREB) activity, a molecular index previously associated with depressant-like behavior. Moreover, since alteration of psychomotor activity is also a common symptom of depression, and psychostimulant reward and locomotion are thought to share common neurobiology, we used the same treatment schedule of amphetamine to probe for changes in locomotion.

Results

Our findings show that OBX produces a behavioral phenotype characterized by both anhedonia and exaggerated locomotor activation. Thus, we observed a blunted response to the rewarding properties of amphetamine (1 mg/kg, 21 days post-lesion), a long-lasting reduction in sucrose intake and increased striatal CREB activity. In addition, the same dose of amphetamine, at a coincident time post-lesion, triggered an exaggerated response to its locomotor-stimulant actions.

Conclusions

These paradoxical findings are not consistent with the notion that reward and locomotion are mediated by a common substrate; this dissociation may be useful in modeling psychiatric disorders such as mixed depressive states. In addition, our findings suggest that central reward circuitry may constitute a possible target for rationally designed therapeutics for depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barrot M, Olivier JD, Perrotti LI, DiLeone RJ, Berton O, Eisch AJ, Impey S, Storm DR, Neve RL, Yin JC, Zachariou V, Nestler EJ (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci USA 99:11435–11440

    Article  PubMed  CAS  Google Scholar 

  • Benazzi F (2000) Depressive mixed states: unipolar and bipolar II. Eur Arch Psychiatry Clin Neurosci 250:249–253

    Article  PubMed  CAS  Google Scholar 

  • Benazzi F (2007a) Bipolar disorder—focus on bipolar II disorder and mixed depression. Lancet 369:935–945

    Article  PubMed  Google Scholar 

  • Benazzi F (2007b) Challenging the unipolar–bipolar division: does mixed depression bridge the gap? Prog Neuropsychopharmacol Biol Psychiatry 31:97–103

    Article  Google Scholar 

  • Boye SM, Grant RJ, Clarke PB (2001) Disruption of dopaminergic neurotransmission in nucleus accumbens core inhibits the locomotor stimulant effects of nicotine and D-amphetamine in rats. Neuropharmacology 40:792–805

    Article  PubMed  CAS  Google Scholar 

  • Boye SM, Grant RJ, Tawfik VL (2007) Intracranial self-stimulation of the dorsal raphe sensitizes psychostimulant locomotion. Behav Neurosci 121:550–558

    Article  PubMed  CAS  Google Scholar 

  • Calcagnetti DJ, Quatrella LA, Schechter MD (1996) Olfactory bulbectomy disrupts the expression of cocaine-induced conditioned place preference. Physiol Behav 59:597–604

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WAJ, Wise RA (1996) Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex. J Neurosci 16:3112–3122

    PubMed  CAS  Google Scholar 

  • Carlezon WAJ, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N, Duman RS, Neve RL, Nestler EJ (1998) Regulation of cocaine reward by CREB. Science 282:2272–2275

    Article  PubMed  CAS  Google Scholar 

  • Chambers RA, Sheehan T, Taylor JR (2004) Locomotor sensitization to cocaine in rats with olfactory bulbectomy. Synapse 52:167–175

    Article  PubMed  CAS  Google Scholar 

  • Chambliss HO, Van Hoomissen JD, Holmes PV, Bunnell BN, Dishman RK (2004) Effects of chronic activity wheel running and imipramine on masculine copulatory behavior after olfactory bulbectomy. Physiol Behav 82:593–600

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Slattery DA (2007) Animal models of mood disorders: recent developments. Curr Opin Psychiatry 20:1–7

    Article  PubMed  Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Bruijnzeel AW, Skjei KL, Markou A (2003a) Bupropion enhances brain reward function and reverses the affective and somatic aspects of nicotine withdrawal in the rat. Psychopharmacology (Berl) 168:347–358

    Article  CAS  Google Scholar 

  • Cryan JF, Hoyer D, Markou A (2003b) Withdrawal from chronic amphetamine induces depressive-like behavioral effects in rodents. Biol Psychiatry 54:49–58

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47(Suppl 1):227–241

    PubMed  Google Scholar 

  • Edmonds DE, Gallistel CR (1974) Parametric analysis of brain stimulation reward in the rat: III. Effect of performance variables on the reward summation function. J Comp Physiol Psychol 87:876–883

    Article  PubMed  CAS  Google Scholar 

  • Gallistel CR, Karras D (1984) Pimozide and amphetamine have opposing effects on the reward summation function. Pharmacol Biochem Behav 20:73–77

    Article  PubMed  CAS  Google Scholar 

  • Gallistel CR, Shizgal P, Yeomans JS (1981) A portrait of the substrate for self-stimulation. Psychol Rev 88:228–273

    Article  PubMed  CAS  Google Scholar 

  • Gourley SL, Kiraly DD, Howell JL, Olausson P, Taylor JR (2008) Acute hippocampal brain-derived neurotrophic factor restores motivational and forced swim performance after corticosterone. Biol Psychiatry 64:884–890

    Article  PubMed  CAS  Google Scholar 

  • Hall RD, Macrides F (1983) Olfactory bulbectomy impairs the rat's radial-maze behavior. Physiol Behav 30:797–803

    Article  PubMed  CAS  Google Scholar 

  • Holmes PV, Masini CV, Primeaux SD, Garrett JL, Zellner A, Stogner KS, Duncan AA, Crystal JD (2002) Intravenous self-administration of amphetamine is increased in a rat model of depression. Synapse 46:4–10

    Article  PubMed  CAS  Google Scholar 

  • Hozumi S, Nakagawasai O, Tan-No K, Niijima F, Yamadera F, Murata A, Arai Y, Yasuhara H, Tadano T (2003) Characteristics of changes in cholinergic function and impairment of learning and memory-related behavior induced by olfactory bulbectomy. Behav Brain Res 138:9–15

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S (2003) Involvement of the olfactory tubercle in cocaine reward: intracranial self-administration studies. J Neurosci 23:9305–9311

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Qin M, Liu ZH (2005) The functional divide for primary reinforcement of D-amphetamine lies between the medial and lateral ventral striatum: is the division of the accumbens core, shell, and olfactory tubercle valid? J Neurosci 25:5061–5065

    Article  PubMed  CAS  Google Scholar 

  • Jancsar SM, Leonard BE (1981) The effects of antidepressant drugs on conditioned taste aversion learning of the olfactory bulbectomized rat. Neuropharmacology 20:1341–1345

    PubMed  CAS  Google Scholar 

  • Le Pen G, Gaudet L, Mortas P, Mory R, Moreau JL (2002) Deficits in reward sensitivity in a neurodevelopmental rat model of schizophrenia. Psychopharmacology (Berl) 161:434–441

    Article  Google Scholar 

  • Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S, Lambas-Senas L, Wiborg O, Haddjeri N, Pineyro G, Sadikot AF, Debonnel G (2007) Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 55:712–725

    Article  PubMed  CAS  Google Scholar 

  • Lumia AR, Teicher MH, Salchli F, Ayers E, Possidente B (1992) Olfactory bulbectomy as a model for agitated hyposerotonergic depression. Brain Res 587:181–185

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Koob GF (1991) Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 4:17–26

    PubMed  CAS  Google Scholar 

  • Miliaressis E, Rompré PP, Laviolette P, Philippe L, Coulombe D (1986) The curve-shift paradigm in self-stimulation. Physiol Behav 37:85–91

    Article  PubMed  CAS  Google Scholar 

  • Moreau JL, Jenck F, Martin JR, Mortas P, Haefely WE (1992) Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmentum self-stimulation behavior in rats. Eur Neuropsychopharmacol 2:43–49

    Article  PubMed  CAS  Google Scholar 

  • Mundl WJ (1980) A constant-current stimulator. Physiol Behav 24:991–993

    Article  PubMed  CAS  Google Scholar 

  • Murray CJ, Lopez AD (1996) Evidence-based health policy—lessons from the Global Burden of Disease Study. Science 274:740–743

    Article  PubMed  CAS  Google Scholar 

  • Muscat R, Willner P (1989) Effects of dopamine receptor antagonists on sucrose consumption and preference. Psychopharmacology (Berl) 99:98–102

    Article  CAS  Google Scholar 

  • Muscat R, Kyprianou T, Osman M, Phillips G, Willner P (1991) Sweetness-dependent facilitation of sucrose drinking by raclopride is unrelated to calorie content. Pharmacol Biochem Behav 40:209–213

    Article  PubMed  CAS  Google Scholar 

  • Papp M, Willner P, Muscat R (1991) An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology (Berl) 104:255–259

    Article  CAS  Google Scholar 

  • Papp M, Moryl E, Willner P (1996) Pharmacological validation of the chronic mild stress model of depression. Eur J Pharmacol 296:129–136

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. Academic, San Diego, CA

    Google Scholar 

  • Phillips G, Willner P, Muscat R (1991) Reward-dependent suppression or facilitation of consummatory behaviour by raclopride. Psychopharmacology (Berl) 105:355–360

    Article  CAS  Google Scholar 

  • Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlezon WAJ (2001) Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci 21:7397–7403

    PubMed  CAS  Google Scholar 

  • Primeaux SD, Holmes PV (1999) Role of aversively motivated behavior in the olfactory bulbectomy syndrome. Physiol Behav 67:41–47

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Sellings LH, Clarke PB (2003) Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. J Neurosci 23:6295–6303

    PubMed  CAS  Google Scholar 

  • Sellings LH, McQuade LE, Clarke PB (2006) Evidence for multiple sites within rat ventral striatum mediating cocaine-conditioned place preference and locomotor activation. J Pharmacol Exp Ther 317:1178–1187

    Article  PubMed  CAS  Google Scholar 

  • Slattery DA, Markou A, Cryan JF (2007) Evaluation of reward processes in an animal model of depression. Psychopharmacology (Berl) 190:555–568

    Article  CAS  Google Scholar 

  • Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29:627–647

    Article  PubMed  Google Scholar 

  • Tomasiewicz HC, Mague SD, Cohen BM, Carlezon WAJ (2006) Behavioral effects of short-term administration of lithium and valproic acid in rats. Brain Res 1093:83–94

    Article  PubMed  CAS  Google Scholar 

  • Ubeda-Banon I, Novejarque A, Mohedano-Moriano A, Pro-Sistiaga P, Rosa-Prieto C, Insausti R, Martinez-Garcia F, Lanuza E, Martinez-Marcos A (2007) Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli. BMC Neurosci 8:103

    Article  PubMed  Google Scholar 

  • Ubeda-Banon I, Novejarque A, Mohedano-Moriano A, Pro-Sistiaga P, Insausti R, Martinez-Garcia F, Lanuza E, Martinez-Marcos A (2008) Vomeronasal inputs to the rodent ventral striatum. Brain Res Bull 75:467–473

    Article  PubMed  CAS  Google Scholar 

  • van Riezen H, Leonard BE (1990) Effects of psychotropic drugs on the behavior and neurochemistry of olfactory bulbectomized rats. Pharmacol Ther 47:21–34

    Article  PubMed  Google Scholar 

  • van Riezen H, Schnieden H, Wren AF (1977) Olfactory bulb ablation in the rat: behavioural changes and their reversal by antidepressant drugs. Br J Pharmacol 60:521–528

    PubMed  Google Scholar 

  • Wang SH, Zhang ZJ, Guo YJ, Zhou H, Teng GJ, Chen BA (2009) Anhedonia and activity deficits in rats: impact of post-stroke depression. J Psychopharmacol (in press)

  • Wann BP, Bah TM, Kaloustian S, Boucher M, Dufort AM, Le Marec N, Godbout R, Rousseau G (2009) Behavioural signs of depression and apoptosis in the limbic system following myocardial infarction: effects of sertraline. J Psychopharmacol (in press)

  • Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl) 93:358–364

    Article  CAS  Google Scholar 

  • Willner P, Muscat R, Papp M (1992) An animal model of anhedonia. Clin Neuropharmacol 15(Suppl 1 Pt A):550A–551A

    PubMed  Google Scholar 

  • Willner P, Benton D, Brown E, Cheeta S, Davies G, Morgan J, Morgan M (1998) “Depression” increases “craving” for sweet rewards in animal and human models of depression and craving. Psychopharmacology (Berl) 136:272–283

    Article  CAS  Google Scholar 

  • Wise RA (1996) Addictive drugs and brain stimulation reward. Annu Rev Neurosci 19:319–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Canadian Psychiatric Research Foundation (SMB), Canadian Institutes of Health Research (GP), and the Natural Sciences and Engineering Research Council of Canada (SMB, GP). SMB and GP hold salary awards and OM-F a postdoctoral fellowship from the Fonds de Recherche en Santé du Québec. The authors are grateful to AstraZeneca (USA) for financial contribution to this work and to Grant S Vallinis for help with video recording analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra M. Boye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeas, T., Morissette, MC., Mnie-Filali, O. et al. Simultaneous anhedonia and exaggerated locomotor activation in an animal model of depression. Psychopharmacology 205, 293–303 (2009). https://doi.org/10.1007/s00213-009-1539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1539-y

Keywords

Navigation