Skip to main content

Advertisement

Log in

Drug context differently regulates cocaine versus heroin self-administration and cocaine- versus heroin-induced Fos mRNA expression in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 04 April 2009

Abstract

Rationale

We have previously reported that cocaine self-administration is facilitated in male rats not residing in the test chambers (Non Resident rats) relative to rats living in the test chambers at all times (Resident rats). Surprisingly, the opposite was found for heroin.

Materials and methods

We predicted that, when given access to both cocaine and heroin on alternate days, Non Resident rats would take more cocaine relative to heroin than Resident rats. Heroin (25.0 μg/kg) and cocaine (400 μg/kg), were made alternately available for 14 self-administration sessions, on a fixed ratio (FR) schedule that was progressively increased from FR1 to FR5. Next, some rats underwent a progressive-ratio procedure for heroin and cocaine. The other rats continued to alternate heroin and cocaine self-administration for 12 additional sessions, during which the FR schedule was progressively increased from FR10 to FR100. The second aim of the study was to investigate Fos mRNA expression in Resident and Non Resident rats treated with non-contingent intravenous infusion of “self-administration doses” of heroin (25.0 μg/kg) and cocaine (400 μg/kg).

Results

We found that: (1) drug-taking context differentially modulates intravenous cocaine versus heroin self-administration; (2) very low doses of cocaine and heroin are sufficient to induce Fos mRNA expression in the posterior caudate; (3) drug-administration context differentially modulates cocaine- versus heroin-induced Fos mRNA expression.

Conclusions

Our study indicates that the context of drug taking can play a powerful role in modulating cocaine versus heroin intake in the laboratory rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angerer LM, Cox KH, Angerer RC (1987) Demonstration of tissue-specific gene expression by in situ hybridization. Methods Enzymol 152:649–661

    Article  PubMed  CAS  Google Scholar 

  • Badiani A, Browman KE, Robinson TE (1995a) Influence of novel versus home environments on sensitization to the psychomotor stimulant effects of cocaine and amphetamine. Brain Res 674:291–298

    Article  PubMed  CAS  Google Scholar 

  • Badiani A, Anagnostaras SG, Robinson TE (1995b) The development of sensitization to the psychomotor stimulant effects of amphetamine is enhanced in a novel environment. Psychopharmacology (Berl) 117:443–452

    Article  CAS  Google Scholar 

  • Badiani A, Oates MM, Day HEW, Watson SJ, Akil H, Robinson TE (1998) Amphetamine-induced behavior, dopamine release and c-fos mRNA expression: modulation by environmental novelty. J Neurosci 18:10579–10593

    PubMed  CAS  Google Scholar 

  • Badiani A, Oates MM, Day HEW, Watson SJ, Akil H, Robinson TE (1999) Environmental modulation of amphetamine-induced c-fos expression in D1 versus D2 striatal neurons. Behav Brain Res 103:203–209

    Article  PubMed  CAS  Google Scholar 

  • Badiani A, Oates MM, Robinson TE (2000a) Modulation of morphine sensitization in the rat by contextual stimuli. Psychopharmacology (Berl) 151:273–282

    Article  CAS  Google Scholar 

  • Cain ME, Smith CM, Bardo MT (2004) The effect of novelty on amphetamine self-administration in rats classified as high and low responders. Psychopharmacology (Berl) 176:129–138

    Article  CAS  Google Scholar 

  • Caprioli D, Celentano M, Paolone G, Badiani A (2007a) Modeling the role of environment in addiction. Prog Neuropsychopharmacol Biol Psych 31:1639–1653

    Article  Google Scholar 

  • Caprioli D, Paolone G, Celentano M, Testa A, Nencini P, Badiani A (2007b) Environmental modulation of cocaine self-administration in the rat. Psychopharmacology (Berl) 192:397–406

    Article  CAS  Google Scholar 

  • Caprioli D, Celentano M, Paolone G, Lucantonio F, Bari A, Nencini P, Badiani A (2008) Opposite environmental regulation of heroin and amphetamine self-administration in the rat. Psychopharmacology (Berl) 198:395–404

    Article  CAS  Google Scholar 

  • Caprioli D, Celentano M, Dubla A, Lucantonio F, Nencini P, Badiani A (2009) Ambience and drug choice: cocaine and heroin taking as a function of environmental context in humans and rats. Biol Psychiatry (in press)

  • Carter BL, Tiffany ST (1999) Meta-analysis of cue-reactivity in addiction research. Addiction 94:327–340

    Article  PubMed  CAS  Google Scholar 

  • Chang JY, Janak PH, Woodward DJ (1998) Comparison of mesocorticolimbic neuronal responses during cocaine and heroin self-administration in freely moving rats. J Neurosci 18:3098–3115

    PubMed  CAS  Google Scholar 

  • Cornish JL, Shahnawaz Z, Thompson MR, Wong S, Morley KC, Hunt GE, McGregor IS (2003) Heat increases 3,4-methylenedioxymethamphetamine self-administration and social effects in rats. Eur J Pharmacol 482:339–341

    Article  PubMed  CAS  Google Scholar 

  • Crombag HS, Badiani A, Robinson TE (1996) Signalled versus unsignalled intravenous amphetamine: large differences in the acute psychomotor response and sensitization. Brain Res 722:227–231

    Article  PubMed  CAS  Google Scholar 

  • Crombag H, Bossert JM, Koya E, Shaham Y (2008) Context-induced relapse to drug seeking: a review. Phil Trans R Soc B 363:3233–3243

    Article  PubMed  Google Scholar 

  • Curran T, Gordon MB, Rubino KL, Sambucetti LC (1987) Isolation and characterization of the c-fos(rat) cDNA and analysis of post-translational modification in vitro. Oncogene 2:79–84

    PubMed  CAS  Google Scholar 

  • Dalgarno P, Shewan D (1996) Illicit use of ketamine in Scotland. J Psychoactive Drugs 28:191–199

    PubMed  CAS  Google Scholar 

  • Devine DP, Leone P, Pocock D, Wise RA (1993) Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. J Pharmacol Exp Ther 266:1236–1246

    PubMed  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  Google Scholar 

  • Dworkin SI, Guerin GF, Co C, Goeders NE, Smith JE (1988) Lack of an effect of 6-hydroxydopamine lesions of the nucleus accumbens on intravenous morphine self-administration. Pharmacol Biochem Behav 30:1051–1057

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SM, Thomas MJ, Robinson TE (2004) Morphine-induced c-fos mRNA expression in striatofugal circuits: modulation by dose, environmental context, and drug history. Neuropsychopharmacology 29:1664–1674

    Article  PubMed  CAS  Google Scholar 

  • Gerrits MA, Van Ree JM (1996) Effect of nucleus accumbens dopamine depletion on motivational aspects involved in initiation of cocaine and heroin self-administration in rats. Brain Res 713:114–124

    Article  PubMed  CAS  Google Scholar 

  • Goeders NE (2003) The impact of stress on addiction. Eur Neuropsychopharmacol 13:435–441

    Article  PubMed  Google Scholar 

  • Gysling K, Wang RY (1983) Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res 277:119–127

    Article  PubMed  CAS  Google Scholar 

  • Hope BT, Simmons DE, Mitchell TB, Kreuter JD, Mattson BJ (2006) Cocaine-induced locomotor activity and Fos expression in nucleus accumbens are sensitized for 6 months after repeated cocaine administration outside the home cage. Eur J Neurosci 24:867–875

    Article  PubMed  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res Rev 56:27–78

    Article  PubMed  CAS  Google Scholar 

  • Johanson CE, Fischman MW (1989) The pharmacology of cocaine related to its abuse. Pharmacol Rev 41:3–52

    PubMed  CAS  Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    PubMed  CAS  Google Scholar 

  • Koob GF (2008) A role for brain stress systems in addiction. Neuron 59:11–34

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS (1994) Neurochemistry of amphetamine. In: Cho AK, Segal DS (eds) Amphetamine and its analogs: psychopharmacology, toxicology and abuse. Academic, San Diego, pp 81–113

    Google Scholar 

  • Matthews RT, German DC (1984) Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine. Neuroscience 11:617–625

    Article  PubMed  CAS  Google Scholar 

  • McElrath K, McEvoy K (2002) Negative experiences on Ecstasy: the role of drug, set and setting. J Psychoactive Drugs 34:199–208

    PubMed  Google Scholar 

  • Miczek KA, Covington HE 3rd, Nikulina EM Jr, Hammer RP (2004) Aggression and defeat: persistent effects on cocaine self-administration and gene expression in peptidergic and aminergic mesocorticolimbic circuits. Neurosci Biobehav Rev 27:787–802

    Article  PubMed  CAS  Google Scholar 

  • Miller JA (1991) The calibration of 35S or 32P with 14C-labeled brain paste or 14C-plastic standards for quantitative autoradiography using LKB ultrofilm or Amersham hyperfilm. Neurosci Lett 121:211–214

    Article  PubMed  CAS  Google Scholar 

  • Nace EP (1988) Posttraumatic stress disorder and substance abuse. Clinical issues. Recent Dev Alcohol 6:9–26

    PubMed  CAS  Google Scholar 

  • Nayak PK, Misra AL, Mulé SJ (1976) Physiological disposition and biotransformation of (3H) cocaine in acutely and chronically treated rats. J Pharmacol Exp Ther 196:556–569

    Google Scholar 

  • Nestler EJ (2005) Historical review: molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol Sci 25:210–218

    Article  Google Scholar 

  • O’Brien CP, Childress AR, Mclellan TA, Ehrman R (1992) Classical conditioning in drug dependent humans. Ann N Y Acad Sci 654:400–415

    Article  PubMed  Google Scholar 

  • Paolone G, Burdino R, Badiani A (2003) Dissociation in the modulatory effects of environmental novelty on the locomotor, analgesic, and eating response to acute and repeated morphine in the rat. Psychopharmacology (Berl) 166:146–155

    CAS  Google Scholar 

  • Paolone G, Conversi D, Caprioli D, Del Bianco P, Nencini P, Cabib S et al (2007) Modulatory effect of environmental context and drug history on heroin-induced psychomotor activity and Fos protein expression in the rat brain. Neuropsychopharmacology 32:2611–2623

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology (Berl) 84:167–173

    Article  CAS  Google Scholar 

  • Piazza PV, Le Moal ML (1996) Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu Rev Pharmacol Toxicol 36:359–378

    Article  PubMed  CAS  Google Scholar 

  • Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Rev 33:13–33

    Google Scholar 

  • Singer G, Wallace M (1984) Effects of 6-OHDA lesions in the nucleus accumbens on the acquisition of self injection of heroin under schedule and non schedule conditions in rats. Pharmacol Biochem Behav 20:807–809

    Article  PubMed  CAS  Google Scholar 

  • Smith JE, Guerin GF, Co C, Barr TS, Lane JD (1985) Effects of 6-OHDA lesions of the central medial nucleus accumbens on rat intravenous morphine self-administration. Pharmacol Biochem Behav 23:843–849

    Article  PubMed  CAS  Google Scholar 

  • Stallwitz A, Shewan D (2004) A qualitative exploration of the impact of cultural and social factors on heroin use in Shetland (Scotland). J Psychoactive Drugs 36:367–378

    PubMed  Google Scholar 

  • Stewart J, de Wit H, Eikelboom R (1984) Role of conditioned and unconditioned drug effects in the self-administration of opiates and stimulants. Psychol Rev 91:251–268

    Article  PubMed  CAS  Google Scholar 

  • Strandberg JJ, Kugelberg FC, Alkass K, Gustavsson A, Zahlsen K, Spigset O, Druid H (2006) Toxicological analysis in rats subjected to heroin and morphine overdose. Toxicol Lett 166:11–18

    Article  PubMed  CAS  Google Scholar 

  • Uslaner J, Badiani A, Norton CS, Day HEW, Watson SJ, Akil H, Robinson TE (2001) Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur J Neurosci 13:1977–1983

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Gracy KN, Pickel VM (1999) Mu-opioid and NMDA-type glutamate receptors are often colocalized in spiny neurons within patches of the caudate-putamen nucleus. J Comp Neurol 412:132–146

    Article  PubMed  CAS  Google Scholar 

  • Weinshenker D, Schroeder JP (2007) There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology 32:1433–1451

    Article  PubMed  CAS  Google Scholar 

  • Wikler A (1973) Dynamics of drug dependence, implication of a conditioning theory for research and treatment. Arch Gen Psychiatry 28:611–616

    PubMed  CAS  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nature Rev Neurosci 5:483–494

    Article  CAS  Google Scholar 

  • Zhang F, Zhou W, Tang S, Lai M, Liu H, Yang G (2004) Motivation of heroin-seeking elicited by drug-associated cues is related to total amount of heroin exposure during self-administration in rats. Pharmacol Biochem Behav 79:291–298

    Article  PubMed  CAS  Google Scholar 

  • Zinberg NE (1984) Drug, set, and setting the basis for controlled intoxicant use. Yale University Press, New Haven

Download references

Acknowledgements

This work was supported by grants from the Sapienza University of Rome (C26A06LHXL and C26F06Y9LL) and from the Italian Ministry for University and Research (PRIN, 2005050334_004). The authors thank Ms. Ilaria Lucchino and Ms. Laura Righetti and for their help with in situ hybridization procedures and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Badiani.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00213-009-1531-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celentano, M., Caprioli, D., Di Pasquale, P. et al. Drug context differently regulates cocaine versus heroin self-administration and cocaine- versus heroin-induced Fos mRNA expression in the rat. Psychopharmacology 204, 349–360 (2009). https://doi.org/10.1007/s00213-009-1467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1467-x

Keywords

Navigation