Skip to main content
Log in

Effects of adolescent fluoxetine treatment on fear-, anxiety- or stress-related behaviors in C57BL/6J or BALB/cJ mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 02 September 2008

Abstract

Rationale

5-Hydroxytryptamine (5-HT, serotonin) plays a major role in brain ontogeny. Disruption of 5-HT during early postnatal development produces lasting changes in rodent ‘emotion-related’ behaviors. Adverse effects of treatment with serotonin reuptake inhibitor (SRI) antidepressants have been reported in human adolescents. However, the long-term effects of chronic SRI treatment during adolescence in rodents remain unclear.

Objectives

The objectives of the study are to assess the effects of fluoxetine treatment throughout the adolescent period in measures of fear-, anxiety- and stress-related endpoints in drug-free adults and to examine these effects in two genetic strains of mice differing in baseline stress- and anxiety-related behaviors and sensitivity to SRIs.

Materials and methods

C57BL/6J and BALB/cJ mice received one of two fluoxetine doses for 4 weeks during adolescence (3–7 weeks old). A separate group of C57BL/6J and BALB/cJ mice received fluoxetine for 4 weeks during adulthood (8–12 weeks old). After a 3-week washout period, mice were tested for anxiety-like behaviors (novel open field, elevated plus-maze), fear conditioning and extinction, and stress-related responses to forced swim, as well as serotonin brain levels.

Results

Adolescent fluoxetine treatment did not increase adult measures of anxiety-, fear- or stress-related behaviors, or brain serotonin levels. The same duration of treatment in adulthood also had no effects on these measures when tested after a 3-week washout period.

Conclusions

In clear contrast with emotion-related abnormalities caused by preadolescent fluoxetine treatment or genetic inactivation of fluoxetine’s pharmacological target, the 5-HT transporter, fluoxetine treatment throughout mouse adolescence did not produce detectable, lasting abnormalities in either “high” or “low anxiety” inbred mouse strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexandre C, Popa D, Fabre V, Bouali S, Venault P, Lesch KP, Hamon M, Adrien J (2006) Early life blockade of 5-hydroxytryptamine 1A receptors normalizes sleep and depression-like behavior in adult knock-out mice lacking the serotonin transporter. J Neurosci 26:5554–5564

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL, Dumont NL, Teicher MH (2002) Differences in behavior and monoamine laterality following neonatal clomipramine treatment. Dev Psychobiol 41:50–57

    Article  PubMed  CAS  Google Scholar 

  • Anisman H, Hayley S, Kelly O, Borowski T, Merali Z (2001) Psychogenic, neurogenic, and systemic stressor effects on plasma corticosterone and behavior: mouse strain-dependent outcomes. Behav Neurosci 115:443–454

    Article  PubMed  CAS  Google Scholar 

  • Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306:879–881

    Article  PubMed  CAS  Google Scholar 

  • Ansorge MS, Hen R, Gingrich JA (2007) Neurodevelopmental origins of depressive disorders. Curr Opin Pharmacol 7:8–17

    Article  PubMed  CAS  Google Scholar 

  • Ansorge MS, Morelli E, Gingrich JA (2008) Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. J Neurosci 28:199–207

    Article  PubMed  CAS  Google Scholar 

  • Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125:141–149

    Article  PubMed  CAS  Google Scholar 

  • Bhansali P, Dunning J, Singer SE, David L, Schmauss C (2007) Early life stress alters adult serotonin 2C receptor pre-mRNA editing and expression of the alpha subunit of the heterotrimeric G-protein G q. J Neurosci 27:1467–1473

    Article  PubMed  CAS  Google Scholar 

  • Bolivar VJ, Pooler O, Flaherty L (2001) Inbred strain variation in contextual and cued fear conditioning behavior. Mamm Genome 12:651–656

    Article  PubMed  CAS  Google Scholar 

  • Bothe GW, Bolivar VJ, Vedder MJ, Geistfeld JG (2005) Behavioral differences among fourteen inbred mouse strains commonly used as disease models. Comp Med 55:326–334

    PubMed  CAS  Google Scholar 

  • Boyce-Rustay JM, Holmes A (2006) Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 31:2405–2414

    Article  PubMed  CAS  Google Scholar 

  • Boyce-Rustay JM, Cameron HA, Holmes A (2007) Chronic swim stress alters sensitivity to acute behavioral effects of ethanol in mice. Physiol Behav 91:77–86

    Article  PubMed  CAS  Google Scholar 

  • Burghardt NS, Sullivan GM, McEwen BS, Gorman JM, LeDoux JE (2004) The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biol Psychiatry 55:1171–1178

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    Article  PubMed  CAS  Google Scholar 

  • Dohler KD, Wuttke W (1975) Changes with age in levels of serum gonadotropins, prolactin and gonadal steroids in prepubertal male and female rats. Endocrinology 97:898–907

    Article  PubMed  CAS  Google Scholar 

  • Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Feng P, Ma Y, Vogel GW (2001) The critical window of brain development from susceptive to insusceptive. Effects of clomipramine neonatal treatment on sexual behavior. Brain Res Dev Brain Res 129:107–110

    Article  PubMed  CAS  Google Scholar 

  • Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • Gibbons RD, Brown CH, Hur K, Marcus SM, Bhaumik DK, Erkens JA, Herings RM, Mann JJ (2007) Early evidence on the effects of regulators’ suicidality warnings on SSRI prescriptions and suicide in children and adolescents. Am J Psychiatry 164:1356–1363

    Article  PubMed  Google Scholar 

  • Gross C, Hen R (2004) The developmental origins of anxiety. Nat Rev Neurosci 5:545–552

    Article  PubMed  CAS  Google Scholar 

  • Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002) Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416:396–400

    Article  PubMed  CAS  Google Scholar 

  • Hammad TA, Laughren T, Racoosin J (2006) Suicidality in pediatric patients treated with antidepressant drugs. Arch Gen Psychiatry 63:332–339

    Article  PubMed  CAS  Google Scholar 

  • Handley SL, Mithani S (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol 327:1–5

    Article  PubMed  CAS  Google Scholar 

  • Hansen HH, Sanchez C, Meier E (1997) Neonatal administration of the selective serotonin reuptake inhibitor Lu 10-134-C increases forced swimming-induced immobility in adult rats: a putative animal model of depression? J Pharmacol Exp Ther 283:1333–1341

    PubMed  CAS  Google Scholar 

  • Hariri AR, Holmes A (2006) Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn Sci 10:182–191

    Article  PubMed  Google Scholar 

  • Hefner K, Holmes A (2007a) An investigation of the behavioral actions of ethanol across adolescence in mice. Psychopharmacology (Berl) 191:311–22

    Article  CAS  Google Scholar 

  • Hefner K, Holmes A (2007b) Ontogeny of fear-, anxiety- and depression-related behavior across adolescence in C57BL/6J mice. Behav Brain Res 176:210–215

    Article  PubMed  Google Scholar 

  • Hilakivi LA, Hilakivi I (1987) Increased adult behavioral ‘despair’ in rats neonatally exposed to desipramine or zimeldine: an animal model of depression? Pharmacol Biochem Behav 28:367–369

    Article  PubMed  CAS  Google Scholar 

  • Hohmann CF, Hamon R, Batshaw ML, Coyle JT (1988) Transient postnatal elevation of serotonin levels in mouse neocortex. Brain Res 471:163–166

    PubMed  CAS  Google Scholar 

  • Holick KA, Lee DC, Hen R, Dulawa SC (2007) Behavioral Effects of Chronic Fluoxetine in BALB/cJ Mice Do Not Require Adult Hippocampal Neurogenesis or the Serotonin 1A Receptor. Neuropsychopharmacology 33:406–417

    Article  PubMed  CAS  Google Scholar 

  • Holmes A (2008) Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci Biobehav Rev doi:10.1016/j.neurobiorev.2008.03.006

  • Holmes A, Rodgers RJ (2003) Prior exposure to the elevated plus-maze sensitizes mice to the acute behavioral effects of fluoxetine and phenelzine. Eur J Pharmacol 459:221–230

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Parmigiani S, Ferrari PF, Palanza P, Rodgers RJ (2000) Behavioral profile of wild mice in the elevated plus-maze test for anxiety. Physiol Behav 71:509–516

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, le Guisquet AM, Vogel E, Millstein RA, Leman S, Belzung C (2005) Early life genetic, epigenetic and environmental factors shaping emotionality in rodents. Neurosci Biobehav Rev 29:1335–1346

    Article  PubMed  Google Scholar 

  • LaRoche RB, Morgan RE (2007) Adolescent fluoxetine exposure produces enduring, sex-specific alterations of visual discrimination and attention in rats. Neurotoxicol Teratol 29:96–107

    Article  PubMed  CAS  Google Scholar 

  • Lidov HG, Molliver ME (1982a) An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res Bull 8:389–430

    Article  PubMed  CAS  Google Scholar 

  • Lidov HG, Molliver ME (1982b) Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res Bull 9:559–604

    Article  PubMed  CAS  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315–322

    Article  CAS  Google Scholar 

  • Maciag D, Simpson KL, Coppinger D, Lu Y, Wang Y, Lin RC, Paul IA (2006a) Neonatal antidepressant exposure has lasting effects on behavior and serotonin circuitry. Neuropsychopharmacology 31:47–57

    PubMed  CAS  Google Scholar 

  • Maciag D, Williams L, Coppinger D, Paul IA (2006b) Neonatal citalopram exposure produces lasting changes in behavior which are reversed by adult imipramine treatment. Eur J Pharmacol 532:265–269

    Article  PubMed  CAS  Google Scholar 

  • Millstein RA, Holmes A (2007) Effects of repeated maternal separation on anxiety- and depression-related phenotypes in different mouse strains. Neurosci Biobehav Rev 31:3–17

    Article  PubMed  Google Scholar 

  • Mitchell JB, Iny LJ, Meaney MJ (1990) The role of serotonin in the development and environmental regulation of type II corticosteroid receptor binding in rat hippocampus. Brain Res Dev Brain Res 55:231–235

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1978) “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 51:291–294

    Article  PubMed  CAS  Google Scholar 

  • Prathiba J, Kumar KB, Karanth KS (1995) Effects of neonatal clomipramine on cholinergic receptor sensitivity and passive avoidance behavior in adult rats. J Neural Transm Gen Sect 100:93–99

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18:391–418

    Article  PubMed  CAS  Google Scholar 

  • Spear LP, Brake SC (1983) Periadolescence: age-dependent behavior and psychopharmacological responsivity in rats. Dev Psychobiol 16:83–109

    Article  PubMed  CAS  Google Scholar 

  • Stenfors C, Ross SB (2002) Evidence for involvement of 5-hydroxytryptamine(1B) autoreceptors in the enhancement of serotonin turnover in the mouse brain following repeated treatment with fluoxetine. Life Sci 71:2867–2880

    Article  PubMed  CAS  Google Scholar 

  • Usala T, Clavenna A, Zuddas A, Bonati M (2008) Randomised controlled trials of selective serotonin reuptake inhibitors in treating depression in children and adolescents: a systematic review and meta-analysis. Eur Neuropsychopharmacol 18:62–73

    Article  PubMed  CAS  Google Scholar 

  • Velazquez-Moctezuma J, Diaz Ruiz O (1992) Neonatal treatment with clomipramine increased immobility in the forced swim test: an attribute of animal models of depression. Pharmacol Biochem Behav 42:737–739

    Article  PubMed  CAS  Google Scholar 

  • Wellman CL, Izquierdo A, Garret JE, Martin KP, Carroll J, Millstein R, Lesch KP, Murphy DL, Holmes A (2007) Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci 27:684–691

    Article  PubMed  CAS  Google Scholar 

  • Whitaker-Azmitia PM, Druse M, Walker P, Lauder JM (1996) Serotonin as a developmental signal. Behav Brain Res 73:19–29

    Article  PubMed  CAS  Google Scholar 

  • Whittington CJ, Kendall T, Fonagy P, Cottrell D, Cotgrove A, Boddington E (2004) Selective serotonin reuptake inhibitors in childhood depression: systematic review of published versus unpublished data. Lancet 363:1341–1345

    Article  PubMed  CAS  Google Scholar 

  • Wiedholz LM, Owens WA, Horton RE, Feyder M, Karlsson RM, Hefner K, Sprengel R, Celikel T, Daws LC, Holmes A (2008) Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’ behaviors. Mol Psychiatry 13:631–640

    Article  PubMed  CAS  Google Scholar 

  • Willott JF, Turner JG, Carlson S, Ding D, Seegers Bross L, Falls WA (1998) The BALB/c mouse as an animal model for progressive sensorineural hearing loss. Hear Res 115:162–174

    Article  PubMed  CAS  Google Scholar 

  • Yang RJ, Mozhui K, Karlsson RM, Cameron HA, Williams RW, Holmes A (2008) Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and fear learning. Neuropsychopharmacology doi:10.1038/sj.npp.1301665

  • Yoo HS, Bunnell BN, Crabbe JB, Kalish LR, Dishman RK (2000) Failure of neonatal clomipramine treatment to alter forced swim immobility: chronic treadmill or activity-wheel running and imipramine. Physiol Behav 70:407–411

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research is supported by the Intramural Research Program of the National Institute of Alcohol Abuse and Alcoholism (Z01-AA000411) and National Institute on Mental Health (Z01-MH002784). The authors declare no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Holmes.

Additional information

Maxine Norcross and Poonam Mathur contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00213-008-1297-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norcross, M., Poonam, M., Enoch, A.J. et al. Effects of adolescent fluoxetine treatment on fear-, anxiety- or stress-related behaviors in C57BL/6J or BALB/cJ mice. Psychopharmacology 200, 413–424 (2008). https://doi.org/10.1007/s00213-008-1215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1215-7

Keywords

Navigation