Skip to main content

Advertisement

Log in

Nicotine-conditioned single-trial place preference: selective role of nucleus accumbens shell dopamine D1 receptors in acquisition

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Experimental evidence indicates that the mesolimbic dopamine (DA) pathway innervating the ventral striatum is critically involved in the motivational effects of drug abuse. However, the role of DA transmission of the two main subdivisions of the nucleus accumbens (NAc), the shell and the core, in the motivational properties of nicotine is unknown.

Objectives

The aim of this study was to investigate the role of DA D1 and D2 receptors of the rat NAc shell and core in the motivational effects of nicotine using a conditioned place preference (CPP) paradigm.

Methods

The effect of the intracerebral infusion of DA antagonists specific for DA D1 (SCH 39166) and D2 receptors (l-sulpiride) was studied in a single-trial place-conditioning paradigm with fixed assignment of the drug to the unpreferred compartment.

Results

Nicotine induced significant CPP at the dose of 0.4 and 0.6 mg/kg subcutaneously (s.c.). Intra-NAc shell infusion of SCH 39166 (6.25, 12.5, 25 and 50 ng bilaterally, 10 min before nicotine administration), impaired in a dose-dependent manner the acquisition of CPP by nicotine (0.4 mg/kg s.c.). SCH 39166 failed to affect nicotine CPP when infused into the NAc core. l-Sulpiride (25 and 50 ng bilaterally) had no effect on acquisition after intra-Nac shell infusion. SCH 39166 and l-sulpiride were ineffective after infusion in the NAc shell and core 10 min before the test session.

Conclusions

The results indicate that dopamine D1 but not D2 receptors of the NAc shell are specifically involved in the acquisition of nicotine-induced CPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acquas E, Di Chiara G (1994) D1 receptor blockade stereo-specifically impairs the acquisition of drug-conditioned place preference and place aversion. Behav Pharmacol 5:555–569

    Article  PubMed  CAS  Google Scholar 

  • Acquas E, Carboni E, Leone P, Di Chiara G (1989) SCH 23390 blocks drug-conditioned place-preference and place-aversion: anhedonia (lack of reward) or apathy (lack of motivation) after dopamine-receptor blockade? Psychopharmacology 99:151–155

    Article  PubMed  CAS  Google Scholar 

  • Baker DA, Khroyan TV, O'Dell LE, Fuchs RA, Neisewander JL (1996) Differential effects of intra-accumbens sulpiride on cocaine-induced locomotion and conditioned place preference. J Pharmacol Exp Ther 279:392–401

    PubMed  CAS  Google Scholar 

  • Baker DA, Fuchs RA, Specio SE, Khroyan TV, Neisewander JL (1998) Effects of intraaccumbens administration of SCH-23390 on cocaine-induced locomotion and conditioned place preference. Synapse 30:181–193

    Article  PubMed  CAS  Google Scholar 

  • Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43

    Article  PubMed  CAS  Google Scholar 

  • Bardo MT, Neisewander JL (1986) Single-trial conditioned place preference using intravenous morphine. Pharmacol Biochem Behav 25:1101–1105

    Article  PubMed  CAS  Google Scholar 

  • Bardo MT, Neisewander JL, Miller JS (1986) Repeated testing attenuates conditioned place preference with cocaine. Psychopharmacology 89:239–243

    Article  PubMed  CAS  Google Scholar 

  • Bardo MT, Valone JM, Bevins RA (1999) Locomotion and conditioned place preference produced by acute intravenous amphetamine: role of dopamine receptors and individual differences in amphetamine self-administration. Psychopharmacology 143:39–46

    Article  PubMed  CAS  Google Scholar 

  • Beninger RJ, Miller R (1998) Dopamine D1-like receptors and reward-related incentive learning. Neurosci Biobehav Rev 22:335–345

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    Article  PubMed  CAS  Google Scholar 

  • Blackburn JR, Phillips AG, Fibiger HC (1987) Dopamine and preparatory behavior: I. Effects of pimozide. Behav Neurosci 101:352–360

    Article  PubMed  CAS  Google Scholar 

  • Blackburn JR, Pfaus JG, Phillips AG (1992) Dopamine functions in appetitive and defensive behaviours. Prog Neurobiol 39:247–279

    Article  PubMed  CAS  Google Scholar 

  • Calcagnetti DJ, Schechter MD (1994) Nicotine place preference using the biased method of conditioning. Prog Neuropsychopharmacol Biol Psychiatry 18:925–933

    Article  PubMed  CAS  Google Scholar 

  • Carboni E, Acquas E, Leone P, Di Chiara G (1989) 5HT3 receptor antagonists block morphine- and nicotine- but not amphetamine-induced reward. Psychopharmacology 97:175–178

    Article  PubMed  CAS  Google Scholar 

  • Carr GD, Fibiger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: Liebman JM, Cooper SJ (eds) Neuropharmacological basis of reward. Oxford, New York, pp 264–319

  • Cervo L, Samanin R (1995) Effects of dopaminergic and glutamatergic receptor antagonists on the acquisition and expression of cocaine conditioning place preference. Brain Res 673:242–250

    Article  PubMed  CAS  Google Scholar 

  • Clarke PB, Fibiger HC (1987) Apparent absence of nicotine-induced conditioned place preference in rats. Psychopharmacology 92:84–88

    Article  PubMed  CAS  Google Scholar 

  • Cunningham CL, Ferree NK, Howard MA (2003) Apparatus bias and place conditioning with ethanol in mice. Psychopharmacology 170:409–422

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G (2000a) Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 393:295–314

    Article  PubMed  Google Scholar 

  • Di Chiara G (2000b) Behavioural pharmacology and neurobiology of nicotine reward and dependence. In: Clementi F, Fornasari D, Gotti G (eds) Handbook of experimental pharmacology, vol 144. Springer, Berlin Heidelberg New York, pp 603–750

    Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  • Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47:227–241

    Article  PubMed  CAS  Google Scholar 

  • Dickinson A, Smith J, Mirenowicz J (2000) Dissociation of pavlovian and instrumental incentive learning under dopamine antagonists. Behav Neurosci 114:468–483

    Article  PubMed  CAS  Google Scholar 

  • Ettenberg A (1990) Haloperidol prevents the reinstatement of amphetamine-rewarded runway responding in rats. Pharmacol Biochem Behav 36:635–638

    Article  PubMed  CAS  Google Scholar 

  • Ettenberg A, McFarland K (2003) Effects of haloperidol on cue-induced autonomic and behavioral indices of heroin reward and motivation. Psychopharmacology 168:139–145

    Article  PubMed  CAS  Google Scholar 

  • Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41:89–125

    Article  PubMed  CAS  Google Scholar 

  • Hiroi N, White NM (1991) The amphetamine conditioned place preference: differential involvement of dopamine receptor subtypes and two dopaminergic terminal areas. Brain Res 552:141–152

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DC (1989) The use of place conditioning in studying the neuropharmacology of drug reinforcement. Brain Res Bull 23:373–387

    Article  PubMed  CAS  Google Scholar 

  • Horvitz JC, Ettenberg A (1988) Haloperidol blocks the response-reinstating effects of food reward: a methodology for separating neuroleptic effects on reinforcement and motor processes. Pharmacol Biochem Behav 31:861–865

    Article  PubMed  CAS  Google Scholar 

  • Horvitz JC, Ettenberg A (1991) Conditioned incentive properties of a food-paired conditioned stimulus remain intact during dopamine receptor blockade. Behav Neurosci 105:536–541

    Article  PubMed  CAS  Google Scholar 

  • Konorski J (1967) Integrative activity of the brain. University of Chicago Press

  • Le Foll B, Goldberg SR (2005) Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology 178:481–492

    Article  PubMed  CAS  Google Scholar 

  • Le Foll B, Sokoloff P, Stark H, Goldberg SR (2005) Dopamine D(3) receptor ligands block nicotine-induced conditioned place preferences through a mechanism that does not involve discriminative-stimulus or antidepressant-like effects. Neuropsychopharmacology 30:720–730

    PubMed  Google Scholar 

  • McFarland K, Ettenberg A (1995) Haloperidol differentially affects reinforcement and motivational processes in rats running an alley for intravenous heroin. Psychopharmacology 122:346–350

    Article  PubMed  CAS  Google Scholar 

  • McFarland K, Ettenberg A (1998) Haloperidol does not affect motivational processes in an operant runway model of food-seeking behavior. Behav Neurosci 112:630–635

    Article  PubMed  CAS  Google Scholar 

  • McFarland K, Ettenberg A (1999) Haloperidol does not attenuate conditioned place preferences or locomotor activation produced by food- or heroin-predictive discriminative cues. Pharmacol Biochem Behav 62:631–641

    Article  PubMed  CAS  Google Scholar 

  • Morelli M, Di Chiara G (1985) Catalepsy induced by SCH 23390 in rats. Eur J Pharmacol 117:179–185

    Article  PubMed  CAS  Google Scholar 

  • Mucha RF, van der Kooy D, O'Shaughnessy M, Bucenieks P (1982) Drug reinforcement studied by the use of place conditioning in rat. Brain Res 243:91–105

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, Sidney

    Google Scholar 

  • Robbins TW (2005) Role of cortical and striatal dopamine in cognitive function. In: Dunnett SB et al (eds) Handbook of chemical neuroanatomy, vol 21. Dopamine. Elsevier, Amsterdam, pp 395–434

    Google Scholar 

  • Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21:341–359

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  • Sellings LH, Clarke PB (2003) Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. J Neurosci 23:6295–6303

    PubMed  CAS  Google Scholar 

  • Shippenberg TS, Bals-Kubik R, Huber A, Herz A (1991) Neuroanatomical substrates mediating the aversive effects of D-1 dopamine receptor antagonists. Psychopharmacology 103:209–214

    Article  PubMed  CAS  Google Scholar 

  • Shippenberg TS, Bals-Kubik R, Herz A (1993) Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors. J Pharmacol Exp Ther 265:53–59

    PubMed  CAS  Google Scholar 

  • Shoaib M, Stolerman IP, Kumar RC (1994) Nicotine-induced place preferences following prior nicotine exposure in rats. Psychopharmacology 113:445–452

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1982) Neuroleptics and operant behaviour: the anhedonia hypothesis. Behav Brain Sci 5:39–87

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by funds from Ministero dell'Università e della Ricerca, progetti di ricerca nazionale bando 2003 and Centre of Excellence for Studies on Dependence and from the European Commission, NIDE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Di Chiara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spina, L., Fenu, S., Longoni, R. et al. Nicotine-conditioned single-trial place preference: selective role of nucleus accumbens shell dopamine D1 receptors in acquisition. Psychopharmacology 184, 447–455 (2006). https://doi.org/10.1007/s00213-005-0211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0211-4

Keywords

Navigation