Skip to main content

Advertisement

Log in

Impulse activity of midbrain dopamine neurons modulates drug-seeking behavior

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 24 October 2003

Abstract

Rationale

Withdrawal from non-contingent exposure to psychostimulants increases the activity of midbrain dopamine cells and impairs the function of impulse-regulating dopamine autoreceptors. It is unclear whether these neuroadaptations play an important role in withdrawal-associated drug seeking.

Objectives

We determined whether cocaine self-administration modifies the impulse activity of midbrain dopamine neurons and dopamine autoreceptor function, and whether experimentally induced reduction in dopamine cell activity (by autoreceptor activation) could influence drug-seeking behavior.

Methods

Animals were trained to self-administer saline or cocaine (500 µg/kg per infusion) for 7 days. At different withdrawal periods, we used single-unit extracellular recordings to measure impulse activity of dopamine cells and administered the D2/D3 dopamine receptor agonist quinpirole to determine autoreceptor sensitivity. In a separate set of experiments, we determined the effects of autoreceptor-selective doses of quinpirole on drug-seeking behavior (non-reinforced responding in the absence of cocaine) during an extinction/reinstatement task.

Results

Cocaine self-administration induced a short-lived increase in the mean firing rate and bursting activity of midbrain dopamine cells. This effect was greatest at early withdrawal and was paralleled by decreased ability of quinpirole to inhibit dopamine cell firing rate and drug-seeking behavior. Changes in dopamine cell activity dissipated over time; at late withdrawal, when both impulse activity and autoreceptor sensitivity returned to control values, quinpirole dramatically decreased drug-seeking behavior.

Conclusions

These results show that inhibiting dopamine cell impulse activity, by activation of dopamine autoreceptors, reduces drug-seeking behavior. This suggests that the impulse activity of midbrain dopamine cells could be an important factor contributing to relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4a–c.
Fig. 5a–c.
Fig. 6.
Fig. 7a–c.
Fig. 8.
Fig. 9a,b.
Fig. 10a,b.

Similar content being viewed by others

References

  • Ackerman JM, White FJ (1990) A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neurosci Lett 117:181–187

    Article  CAS  PubMed  Google Scholar 

  • Anderson SM, Bari AA, Pierce RC (2003) Administration of the D1-like dopamine receptor antagonist SCH-23390 into the medial nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug-seeking behavior in rats. Psychopharmacology DOI 10.1007/s00213-002-1298-5

  • Bailey CP, O’Callaghan MJ, Croft AP, Manley SJ, Little HJ (2001) Alterations in mesolimbic dopamine function during the abstinence period following chronic ethanol consumption. Neuropharmacology 41:989–999

    Article  CAS  PubMed  Google Scholar 

  • Brodie MS, Pesold C, Appel SB (1999) Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res 23:1848–1852

    Article  CAS  PubMed  Google Scholar 

  • Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185:560–571

    CAS  PubMed  Google Scholar 

  • Bunney BS, Sesack SR, Silva NL (1987) Midbrain dopaminergic systems: neurophysiology and electrophysiological pharmacology. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 113–126

  • Bunney EB, Appel SB, Brodie MS (2001) Electrophysiological effects of cocaethylene, cocaine, and ethanol on dopaminergic neurons of the ventral tegmental area. J Pharmacol Exp Ther 297:696–703

    CAS  PubMed  Google Scholar 

  • Canavier CC (1999) Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J Comput Neurosci 6:49–69

    Article  CAS  PubMed  Google Scholar 

  • Chergui K, Suaud-Chagny MF, Gonon F (1994) Nonlinear relationship between impulse flow, dopamine release and dopamine elimination in the rat brain in vivo. Neuroscience 62:641–645

    Article  CAS  PubMed  Google Scholar 

  • Clark D, Chiodo LA (1988) Electrophysiological and pharmacological characterization of identified nigrostriatal and mesoaccumbens dopamine neurons in the rat. Synapse 2:474–485

    Article  CAS  PubMed  Google Scholar 

  • Comings DE, Muhleman D, Ahn C, Gysin R, Flanagan SD (1994) The dopamine D2 receptor gene: a genetic risk factor in substance abuse. Drug Alcohol Depend 34:175–180

    Article  CAS  PubMed  Google Scholar 

  • Compton PA, Anglin MD, Khalsa-Denison ME, Paredes A (1996) The D2 dopamine receptor gene, addiction, and personality: clinical correlates in cocaine abusers. Biol Psychiatry 39:302–304

    Article  CAS  PubMed  Google Scholar 

  • Cooper DC (2002) The significance of action potential bursting in the brain reward circuit. Neurochemistry 41:333–340

    Article  CAS  Google Scholar 

  • Cornish JL, Kalivas PW (2000) Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 20:RC89

    CAS  PubMed  Google Scholar 

  • De Vries TJ, Schoffelmeer AN, Binnekade R, Vanderschuren LJ (1999) Dopaminergic mechanisms mediating the incentive to seek cocaine and heroin following long-term withdrawal of IV drug self-administration. Psychopharmacology 143:254–260

    Article  Google Scholar 

  • De Vries TJ, Schoffelmeer AN, Binnekade R, Raaso H, Vanderschuren LJ (2002) Relapse to cocaine- and heroin-seeking behavior mediated by dopamine D2 receptors is time-dependent and associated with behavioral sensitization. Neuropsychopharmacology 26:18–26

    Article  Google Scholar 

  • Diana M, Pistis M, Carboni S, Gessa GL, Rossetti ZL (1993) Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: electrophysiological and biochemical evidence. Proc Natl Acad Sci USA 90:7966–7969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diana M, Pistis M, Muntoni AL, Gessa GL (1995) Profound decrease of mesolimbic dopaminergic neuronal activity in morphine withdrawn rats. J Pharmacol Exp Ther 272:781–785

    CAS  PubMed  Google Scholar 

  • Diana M, Melis M, Muntoni AL, Gessa GL (1998) Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proc Natl Acad Sci USA 95:10269–10273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Einhorn LC, Johansen PA, White FJ (1988) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8:100–112

    CAS  PubMed  Google Scholar 

  • Everitt BJ, Wolf ME (2002) Psychomotor stimulant addiction: a neural systems perspective. J Neurosci 22:3312–3320

    CAS  PubMed  Google Scholar 

  • Fuchs RA, Tran-Nguyen LT, Specio SE, Groff RS, Neisewander JL (1998) Predictive validity of the extinction/reinstatement model of drug craving. Psychopharmacology 135:151–160

    Article  CAS  PubMed  Google Scholar 

  • Gao WY, Lee TH, King GR, Ellinwood EH (1998) Alterations in baseline activity and quinpirole sensitivity in putative dopamine neurons in the substantia nigra and ventral tegmental area after withdrawal from cocaine pretreatment. Neuropsychopharmacology 18:222–232

    Article  CAS  PubMed  Google Scholar 

  • Gessa GL, Melis M, Muntoni AL, Diana M (1998) Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur J Pharmacol 341:39–44

    Article  CAS  PubMed  Google Scholar 

  • Gonon FG (1988) Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24:19–28

    Article  CAS  PubMed  Google Scholar 

  • Grace AA (2000) The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction 95[Suppl 2]:S119–S128

  • Grace AA, Bunney BS (1983) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons. 1. Identification and characterization. Neuroscience 10:301–315

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1984a) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890

    CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1984b) The control of firing pattern in nigral dopamine neurons: single-spike firing. J Neurosci 4:2866–2876

    CAS  PubMed  Google Scholar 

  • Grillner P, Mercuri NB (2002) Intrinsic membrane properties and synaptic inputs regulating the firing activity of the dopamine neurons. Behav Brain Res 130:149–169

    Article  CAS  PubMed  Google Scholar 

  • Grimm JW, Hope BT, Wise RA, Shaham Y (2001) Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412:141–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gysling K, Wang RY (1983) Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res 277:119–127

    Article  CAS  PubMed  Google Scholar 

  • Henry DJ, Greene MA, White FJ (1989) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: repeated administration. J Pharmacol Exp Ther 251:833–839

    CAS  PubMed  Google Scholar 

  • Henry DJ, Hu XT, White FJ (1998) Adaptations in the mesoaccumbens dopamine system resulting from repeated administration of dopamine D1 and D2 receptor-selective agonists: relevance to cocaine sensitization. Psychopharmacology 140:233–242

    Article  CAS  PubMed  Google Scholar 

  • Hitri A, Little KY, Ellinwood EH Jr (1996) Effect of cocaine on dopamine transporter receptors depends on routes of chronic cocaine administration. Neuropsychopharmacology 14:205–210

    Article  CAS  PubMed  Google Scholar 

  • Horger BA, Giles MK, Schenk S (1992) Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacology 107:271–276

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Kornblum JL, Kauer JA (2000) Amphetamine blocks long-term synaptic depression in the ventral tegmental area. J Neurosci 20:5575–5580

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Duffy P (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. II. Dopamine perikarya. J Neurosci 13:276–284

    CAS  PubMed  Google Scholar 

  • Kitai ST, Shepard PD, Callaway JC, Scroggs R (1999) Afferent modulation of dopamine neuron firing patterns. Curr Opin Neurobiol 9:690–697

    Article  CAS  PubMed  Google Scholar 

  • Koeltzow TE, Xu M, Cooper DC, Hu XT, Tonegawa S, Wolf ME, White FJ (1998) Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J Neurosci 18:2231–2238

    CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129

    Article  CAS  PubMed  Google Scholar 

  • Kuhar MJ, Pilotte NS (1996) Neurochemical changes in cocaine withdrawal. Trends Pharmacol Sci 17:260–264

    Article  CAS  PubMed  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1990) Actions of cocaine on rat dopaminergic neurones in vitro. Br J Pharmacol 99:731–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu W, Wolf ME (1997) Expression of dopamine transporter and vesicular monoamine transporter 2 mRNAs in rat midbrain after repeated amphetamine administration. Mol Brain Res 49:137–148

    Article  CAS  PubMed  Google Scholar 

  • Maggos CE, Spangler R, Zhou Y, Schlussman SD, Ho A, Kreek MJ (1997) Quantitation of dopamine transporter mRNA in the rat brain: mapping, effects of “binge” cocaine administration and withdrawal. Synapse 26:55–61

    Article  CAS  PubMed  Google Scholar 

  • Marinelli M, White FJ (2000) Enhanced vulnerability to cocaine self-administration is associated with elevated impulse activity of midbrain dopamine neurons. J Neurosci 20:8876–8885

    CAS  PubMed  Google Scholar 

  • Marinelli M, Cooper DC, White FJ (2001) Electrophysiological correlates of enhanced vulnerability to cocaine self-administration. Phenotypic differences in drug effects related to behavioral traits versus states. NIDA Res Monogr Rev 181:46–48

    Google Scholar 

  • Matthews RT, German DC (1984) Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine. Neuroscience 11:617–625

    Article  CAS  PubMed  Google Scholar 

  • McFarland K, Kalivas PW (2001) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 21:8655–8663

    CAS  PubMed  Google Scholar 

  • Mercuri NB, Calabresi P, Bernardi G (1992) The electrophysiological actions of dopamine and dopaminergic drugs on neurons of the substantia nigra pars compacta and ventral tegmental area. Life Sci 51:711–718

    Article  CAS  PubMed  Google Scholar 

  • Mereu G, Fadda F, Gessa GL (1984) Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res 292:63–69

    Article  CAS  PubMed  Google Scholar 

  • Miles R, Wong RK (1986) Excitatory synaptic interactions between CA3 neurons in the guinea-pig hippocampus. J Physiol 373:397–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noble EP (2000) Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: a review. Eur Psychiatry 15:79–89

    Article  CAS  PubMed  Google Scholar 

  • O’Hara BF, Smith SS, Bird G, Persico AM, Suarez BK, Cutting GR, Uhl GR (1993) Dopamine D2 receptor RFLPs, haplotypes and their association with substance use in black and Caucasian research volunteers. Hum Hered 43:209–218

    Article  PubMed  Google Scholar 

  • Overton PG, Clark D (1997) Burst firing in midbrain dopaminergic neurons. Brain Res Rev 25:312–334

    Article  CAS  PubMed  Google Scholar 

  • Overton PG, Richards CD, Berry MS, Clark D (1999) Long-term potentiation at excitatory amino acid synapses on midbrain dopamine neurons. Neuroreport 10:221–226

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, New York

  • Piazza PV, Deminiere JM, Le Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513

    Article  CAS  PubMed  Google Scholar 

  • Piazza PV, Deminiere JM, Le Moal M, Simon H (1990) Stress- and pharmacologically induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Res 514:22–26

    Article  CAS  PubMed  Google Scholar 

  • Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 25:192–216

    Article  CAS  PubMed  Google Scholar 

  • Pierce RC, Duffy P, Kalivas PW (1995) Sensitization to cocaine and dopamine autoreceptor subsensitivity in the nucleus accumbens. Synapse 20:33–36

    Article  CAS  PubMed  Google Scholar 

  • Pierre PJ, Vezina P (1997) Predisposition to self-administer amphetamine: the contribution of response to novelty and prior exposure to the drug. Psychopharmacology 129:277–284

    Article  CAS  PubMed  Google Scholar 

  • Pilotte NS (1997) Neurochemistry of cocaine withdrawal. Curr Opin Neurol 10:534–538

    Article  CAS  PubMed  Google Scholar 

  • Pucak ML, Grace AA (1994) Evidence that systemically administered dopamine antagonists activate dopamine neuron firing primarily by blockade of somatodendritic autoreceptors. J Pharmacol Exp Ther 271:1181–1192

    CAS  PubMed  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) Is the short-latency dopamine response too short to signal reward error? Trends Neurosci 22:146–151

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95[Suppl 2]:S91–S117

  • Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17:8491–8497

    CAS  PubMed  Google Scholar 

  • Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 11:1598–1604

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Gorny G, Mitton E, Kolb B (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39:257–266

    Article  CAS  PubMed  Google Scholar 

  • Saal D, Dong Y, Bonci A, Malenka RC (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577–582

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (1994) Behavior-related activity of primate dopamine neurons. Rev Neurol (Paris) 150:634–639

    Google Scholar 

  • Schultz W (1997) Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 7:191–197

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2001) Reward signaling by dopamine neurons. Neuroscientist 7:293–302

    Article  CAS  PubMed  Google Scholar 

  • Self DW, Barnhart WJ, Lehman DA, Nestler EJ (1996) Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists. Science 271:1586–1589

    Article  CAS  PubMed  Google Scholar 

  • Seutin V, Johnson SW, North RA (1993) Apamin increases NMDA-induced burst-firing of rat mesencephalic dopamine neurons. Brain Res 630:341–344

    Article  CAS  PubMed  Google Scholar 

  • Shalev U, Highfield D, Yap J, Shaham Y (2000) Stress and relapse to drug seeking in rats: studies on the generality of the effect. Psychopharmacology 150:337–346

    Article  CAS  PubMed  Google Scholar 

  • Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54:1–42

    Article  CAS  PubMed  Google Scholar 

  • Sklair-Tavron L, Shi WX, Lane SB, Harris HW, Bunney BS, Nestler EJ (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc Natl Acad Sci USA 93:11202–11207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spiga S, Serra G, Puddu MC, Foddai M, Diana M (2003) Morphine withdrawal-induced abnormalities in the VTA: confocal laser scanning microscopy. Eur J Neurosci 17:605–612

    Article  PubMed  Google Scholar 

  • Stewart J (2000) Pathways to relapse: the neurobiology of drug- and stress-induced relapse to drug-taking. J Psychiatry Neurosci 25:125–136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suaud-Chagny MF, Chergui K, Chouvet G, Gonon F (1992) Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local in vivo application of amino acids in the ventral tegmental area. Neuroscience 49:63–72

    Article  CAS  PubMed  Google Scholar 

  • Thomas MJ, Malenka RC, Bonci A (2000) Modulation of long-term depression by dopamine in the mesolimbic system. J Neurosci 20:5581–5586

    CAS  PubMed  Google Scholar 

  • Tran-Nguyen LT, Baker DA, Grote KA, Solano J, Neisewander JL (1999) Serotonin depletion attenuates cocaine-seeking behavior in rats. Psychopharmacology 146:60–66

    Article  CAS  PubMed  Google Scholar 

  • Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411:583–587

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, Dewey SL, Wolf AP (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14:169–177

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong C, Pappas N (2001) Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry 158:2015–2021

    Article  CAS  PubMed  Google Scholar 

  • Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL (2001) Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science 292:1175–1178

    Article  CAS  PubMed  Google Scholar 

  • Wang RY (1981) Dopaminergic neurons in the rat ventral tegmental area. III. Effects of D- and L-amphetamine. Brain Res Rev 3:153–165

    Article  CAS  Google Scholar 

  • White FJ (1996) Synaptic regulation of mesocorticolimbic dopamine neurons. Annu Rev Neurosci 19:405–436

    Article  CAS  PubMed  Google Scholar 

  • White FJ, Kalivas PW (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend 51:141–153

    Article  CAS  PubMed  Google Scholar 

  • White FJ, Wang RY (1984a) A10 dopamine neurons: role of autoreceptors in determining firing rate and sensitivity to dopamine agonists. Life Sci 34:1161–1170

    Article  CAS  PubMed  Google Scholar 

  • White FJ, Wang RY (1984b) Electrophysiological evidence for A10 dopamine autoreceptor subsensitivity following chronic D-amphetamine treatment. Brain Res 309:283–292

    Article  CAS  PubMed  Google Scholar 

  • White FJ, Wang RY (1984c) Pharmacological characterization of dopamine autoreceptors in the rat ventral tegmental area: microiontophoretic studies. J Pharmacol Exp Ther 231:275–280

    CAS  PubMed  Google Scholar 

  • Williams J, Lacey M (1988) Actions of cocaine on central monoamine neurons: intracellular recordings in vitro. NIDA Res Monogr 90:234–242

    CAS  PubMed  Google Scholar 

  • Wilson CJ, Callaway JC (2000) Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83:3084–3100

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Nobrega JN, Carroll ME, Niznik HB, Shannak K, Lac ST, Pristupa ZB, Dixon LM, Kish SJ (1994) Heterogeneous subregional binding patterns of 3H-WIN 35,428 and 3H-GBR 12,935 are differentially regulated by chronic cocaine self-administration. J Neurosci 14:2966–2979

    CAS  PubMed  Google Scholar 

  • Wise RA (1998) Drug-activation of brain reward pathways. Drug Alcohol Depend 51:13–22

    Article  CAS  PubMed  Google Scholar 

  • Wolf ME, White FJ, Nassar R, Brooderson RJ, Khansa MR (1993) Differential development of autoreceptor subsensitivity and enhanced dopamine release during amphetamine sensitization. J Pharmacol Exp Ther 264:249–255

    CAS  PubMed  Google Scholar 

  • Wolf ME, White FJ, Hu XT (1994) MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. J Neurosci 14:1735–1745

    CAS  PubMed  Google Scholar 

  • Wolfart J, Roeper J (2002) Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 22:3404–3413

    CAS  PubMed  Google Scholar 

  • Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21:3443–3456

    CAS  PubMed  Google Scholar 

  • Zhang XF, Hu XT, White FJ, Wolf ME (1997) Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J Pharmacol Exp Ther 281:699–706

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by United States Public Health Service Grant DA04093 and Senior Scientist Award DA 00456 from the National Institute on Drug Abuse to F.J.W. M.M. was supported by a NARSAD young investigator award. We are indebted to Dr. Muriel Koehl for invaluable discussions and advice. We thank Jake Battle for help with the writing of the burst analysis program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Marinelli.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00213-003-1674-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinelli, M., Cooper, D.C., Baker, L.K. et al. Impulse activity of midbrain dopamine neurons modulates drug-seeking behavior. Psychopharmacology 168, 84–98 (2003). https://doi.org/10.1007/s00213-003-1491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1491-1

Keywords

Navigation