Skip to main content

Advertisement

Log in

Fibroblast growth factor receptor 1 signaling transcriptionally regulates the axon guidance cue slit1

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Axons sense molecular cues in their environment to arrive at their post-synaptic targets. While many of the molecular cues have been identified, the mechanisms that regulate their spatiotemporal expression remain elusive. We examined here the transcriptional regulation of the guidance gene slit1 both in vitro and in vivo by specific fibroblast growth factor receptors (Fgfrs). We identified an Fgf-responsive 2.3 kb slit1 promoter sequence that recapitulates spatiotemporal endogenous expression in the neural tube and eye of Xenopus embryos. We found that signaling through Fgfr1 is the main regulator of slit1 expression both in vitro in A6 kidney epithelial cells, and in the Xenopus forebrain, even when other Fgfr subtypes are present in cells. These data argue that a specific signaling pathway downstream of Fgfr1 controls in a cell-autonomous manner slit1 forebrain expression and are novel in identifying a specific growth factor receptor for in vivo control of the expression of a key embryonic axon guidance cue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McFarlane S, Lom B (2012) The Xenopus retinal ganglion cell as a model neuron to study the establishment of neuronal connectivity. Dev Neurobiol 72(4):520–536

    Article  PubMed  CAS  Google Scholar 

  2. Chédotal A, Kerjan G, Moreau-Fauvarque C (2005) The brain within the tumor: new roles for axon guidance molecules in cancers. Cell Death Differ 12:1044–1056

    Article  PubMed  CAS  Google Scholar 

  3. Dickson B (2002) Molecular mechanisms of axon guidance. Science 298:1959–1964

    Article  PubMed  CAS  Google Scholar 

  4. James G, Foster SR, Key B, Beverdam A (2013) The expression pattern of EVA1C, a novel slit receptor, is consistent with an axon guidance role in the mouse nervous system. PLoS One 8(9):e74115.1–e74115.10

    Article  CAS  Google Scholar 

  5. Yu J, Cao Q, Yu J, Wu L, Dallol A, Li J, Chen G, Grasso C, Cao X, Lonigro R, Varambally S, Mehra R, Palanisamy N, Wu J, Latif F, Chinnaiyan A (2010) The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer. Oncogene 29(39):5370–5380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dickinson RE, Dallol A, Bieche I, Krex D, Morton D, Maher E, Latif F (2004) Epigenetic inactivation of SLIT3 and SLIT1 genes in human cancers. Br J Cancer 91:2071–2078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Narayan G, Goparaju C, Arias-Pulido H, Kaufmann AM, Schneider A, Dürst M, Mansukhani M, Pothuri B, Murty VV (2006) Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression. Mol Cancer 5:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Aldiri I, Moore KB, Hutcheson KA, Zhang J, Vetter ML (2013) Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/β-catenin signaling. Development 140:2867–2878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Aldiri I, Vetter ML (2012) PRC2 during vertebrate organogenesis: a complex in transition. Dev Biol 367(2):91–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zarin AA, Asadzadeh J, Labrador JP (2014) Transcriptional regulation of guidance at the midline and in motor circuits. Cell Mol Life Sci 71:419–432

    Article  PubMed  CAS  Google Scholar 

  11. Inamata Y, Shirasaki R (2014) Dbx1 triggers crucial molecular programs required for midline crossing by midbrain commissural axons. Development 141:1260–1271

    Article  PubMed  CAS  Google Scholar 

  12. Miyashita T, Yeo S, Hirate Y, Segawa H, Wada H, Little M, Yamada T, Takahashi N, Okamoto H (2004) PlexinA4 is necessary as a downstream target of Islet2 to mediate Slit signaling for promotion of sensory axon branching. Development 131:3705–3715

    Article  PubMed  CAS  Google Scholar 

  13. Tang K, Rubenstein JL, Tsai SY, Tsai MJ (2012) COUP-TFII controls amygdala patterning by regulating neuropilin expression. Development 139:1630–1639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lodato S, Molyneaux BJ, Zuccaro E, Goff LA, Chen HH, Yuan W, Meleski A, Takahashi E, Mahony S, Rinn JL, Gifford DK, Arlotta P (2014) Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nat Neurosci 17:1046–1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Strähle U, Fischer N, Blader P (1997) Expression and regulation of a netrin homologue in the zebrafish embryo. Mech Dev 62:147–160

    Article  PubMed  Google Scholar 

  16. Hörndli CS, Chien CB (2012) Sonic hedgehog is indirectly required for intraretinal axon pathfinding by regulating chemokine expression in the optic stalk. Development 139:2604–2613

    Article  PubMed Central  CAS  Google Scholar 

  17. Barresi MJF, Hutson LD, Chien CB, Karlstrom RO (2005) Hedgehog regulated Slit expression determines commissure and glial cell position in the zebrafish forebrain. Development 132:3643–3656

    Article  PubMed  CAS  Google Scholar 

  18. Atkinson-Leadbeater K, Bertolesi GE, Hehr CL, Webber CA, Cechmanek PB, McFarlane S (2010) Dynamic expression of axon guidance cues required for optic tract development is controlled by fibroblast growth factor signaling. J Neurosci 30:685–693

    Article  PubMed  CAS  Google Scholar 

  19. Tsai PS, Brooks LR, Rochester JR, Kavanaugh SI, Chung WCJ (2011) Fibroblast growth factor signaling in the developing neuroendocrine hypothalamus. Front Neuroendocrinol 32(1):95–107

    Article  PubMed  CAS  Google Scholar 

  20. Turner N, Grose R (2010) Fibroblast growth factor signaling: from development to cancer. Nat Rev Cancer 10:116–129

    Article  PubMed  CAS  Google Scholar 

  21. Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139–149

    Article  PubMed  CAS  Google Scholar 

  22. Yamauchi K, Mizushima S, Tamada A, Yamamoto N, Takashima S, Murakami F (2009) FGF8 signaling regulates growth of midbrain dopaminergic axons by inducing semaphorin 3F. J Neurosci 29(13):4044–4055

    Article  PubMed  CAS  Google Scholar 

  23. Shamim H, Mahmood R, Logan C, Doherty P, Lumsden A, Mason I (1999) Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development 126:945–959

    PubMed  CAS  Google Scholar 

  24. Faber J, Nieuwkoop P (1994) Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Garland Publishing, New York

    Google Scholar 

  25. Ueno H, Gunn M, Dell K, Tseng A, Williams L (1992) A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptor. J Biol Chem 267:1470–1476

    PubMed  CAS  Google Scholar 

  26. Atkinson-Leadbeater K, Hehr C, McFarlane S (2014) Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye. Dev Dyn 243:663–675

    Article  PubMed  CAS  Google Scholar 

  27. Golub R, Adelman Z, Clementi J, Weiss R, Bonasera J, Servetnick M (2000) Evolutionarily conserved and divergent expression of members of the FGF receptor family among vertebrate embryos, as revealed by FGFR expression patterns in Xenopus. Dev Genes Evol 210:345–357

    Article  PubMed  CAS  Google Scholar 

  28. Chen YY, Hehr CL, Atkinson-Leadbeater K, Hocking JC, McFarlane S (2007) Targeting of retinal axons requires the metalloproteinase ADAM10. J Neurosci 27:8448–8456

    Article  PubMed  CAS  Google Scholar 

  29. Haas K, Jensen K, Sin WC, Foa L, Cline HT (2002) Targeted electroporation in Xenopus tadpoles in vivo: from single cells to the entire brain. Differentiation 70:148–154

    Article  PubMed  CAS  Google Scholar 

  30. Rafferty KJ, Sherwin RW (1969) The length of secondary chromosomal constrictions in normal individuals and in a nucleolar mutant of Xenopus laevis. Cytogenetics 8:427–438

    Article  PubMed  Google Scholar 

  31. Brunsdon HR (2015) An analysis of FGF-regulated genes during Xenopus neural development. Dissertation, University of York

  32. Sive H, Grainger RM, Harland RM (2000) Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  33. Atkinson-Leadbeater K, Bertolesi GE, Johnston JA, Hehr CL, McFarlane S (2009) FGF receptor dependent regulation of Lhx9 expression in the developing nervous system. Dev Dyn 238:367–375

    Article  PubMed  CAS  Google Scholar 

  34. Hongo I, Kengaku M, Okamoto H (1999) FGF signaling and the anterior neural induction in Xenopus. Dev Biol 216:561–581

    Article  PubMed  CAS  Google Scholar 

  35. Hocking JC, Hehr CL, Bertolesi GE, Wu JY, McFarlane S (2010) Distinct roles for Robo2 in the regulation of axon and dendrite growth by retinal ganglion cells. Mech Dev 127(1–2):36–48

    Article  PubMed  CAS  Google Scholar 

  36. Holt CE, Bertsch TW, Ellis HM, Harris WA (1988) Cellular determination in the Xenopus retina is independent of linear and birth date. Neuron 1:15–26

    Article  PubMed  CAS  Google Scholar 

  37. Russell C (2002) The roles of hedgehogs and fibroblast growth factors in eye development and retinal cell rescue. Vis Res 43:899–912

    Article  CAS  Google Scholar 

  38. Sleptsova-Friedrich I, Li Y, Emelyanov A, Ekker M, Korzh V, Ge R (2001) fgfr3 and regionalization of anterior neural tube in zebrafish. Mech Dev 102(1–2):213–217

    Article  PubMed  CAS  Google Scholar 

  39. Friesel R, Dawid I (1991) cDNA cloning and developmental expression of fibroblast growth factor receptors from Xenopus laevis. Mol Cell Biol 11:2481–2488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh B, Hubbard S, Schlessinger J (1997) Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276:955–960

    Article  PubMed  CAS  Google Scholar 

  41. Bertolesi GE, Su HY, Michaiel G, Dueck SM, Hehr CL, McFarlane S (2011) Two promoters with distinct activities in different tissues drive the expression of heparanase in Xenopus. Dev Dyn 240:2657–2672

    Article  PubMed  CAS  Google Scholar 

  42. Hacohen N, Kramer S, Sutherland S, Hiromi Y, Krasnow MA (1998) sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92(2):253–263

    Article  PubMed  CAS  Google Scholar 

  43. Plump A, Erskine L, Sabatier C, Brose K, Epstein C, Goodman C, Mason C, Tessier-Lavigne M (2002) Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33:219–232

    Article  PubMed  CAS  Google Scholar 

  44. Erskine L, Williams S, Brose K, Kidd T, Rachel R, Goodman C, Tessier-Lavigne M, Mason C (2000) Retinal ganglion cell axon guidance in the mouse optic chiasm: expression and function of robos and slits. J Neurosci 20:4975–4982

    Article  PubMed  CAS  Google Scholar 

  45. Zolessi F, Poggi L, Wilkinson C, Chien C, Harris W (2006) Polarization and orientation of retinal ganglion cells in vivo. Neural Dev 1:1–21

    Article  Google Scholar 

  46. Tosa Y, Tsukano K, Itoyama T, Fukagawa M, Nii Y, Ishikawa R, Suzuki KT, Fukui M, Kawaguchi M, Murakami Y (2015) Involvement of Slit-Robo signaling in the development of the posterior commissure and concomitant swimming behavior in Xenopus laevis. Zool Lett 1:28

    Article  Google Scholar 

  47. Hofmeister W, Devine CA, Rothnagel JA, Key B (2012) Frizzled-3a and slit2 genetically interact to modulate midline axon crossing in the telencephalon. Mech Dev 129(5–8):109–124

    Article  PubMed  CAS  Google Scholar 

  48. Devine CA, Key B (2008) Robo-Slit interactions regulate longitudinal axon pathfinding in the embryonic vertebrate brain. Dev Biol 313(1):371–383

    Article  PubMed  CAS  Google Scholar 

  49. Philipp M, Niederkofler V, Debrunner M, Alther T, Kunz B, Stoeckli ET (2012) RabGDI controls axonal midline crossing by regulating Robo1 surface expression. Neural Dev 7:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Brose K, Bland K, Wang K, Arnott D, Henzel W, Goodman C, Tessier-Lavigne M, Kidd T (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96:795–806

    Article  PubMed  CAS  Google Scholar 

  51. Chung WCJ, Moyle SS, Tsai PS (2008) Fibroblast growth factor 8 signaling through FGF receptor 1 is required for gonadotropin-releasing hormone neuronal development in mice. Endocrinology 149(10):4997–5003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yamagishi M, Okamoto H (2010) Competition for ligands between FGFR1 and FGFR4 regulates Xenopus neural development. Int J Dev Biol 54:93–104

    Article  PubMed  CAS  Google Scholar 

  53. Heller N, Brändli A (1992) Xenopus Pax-2/5/8 orthologues: novel insights into Pax gene evolution and identification of Pax-8 as the earliest marker for otic and pronephric cell lineages. Dev Genet 24:208–219

    Article  Google Scholar 

  54. Choubey L, Collette JC, Smith KM (2017) Quantitative assessment of fibroblast growth factor receptor 1 expression in neurons and glia. PeerJ 5:e3173

    Article  PubMed  PubMed Central  Google Scholar 

  55. Frinchi M, Bonomo A, Trovato-Salinaro A, Condorelli DF, Fuxe K, Spampinato MG, Mudo G (2008) Fibroblast growth factor-2 and its receptor expression in proliferating precursor cells of the subventricular zone in the adult rat brain. Neurosci Lett 447(1):20–25

    Article  PubMed  CAS  Google Scholar 

  56. Mehlen P, Delloye-Bourgeois C, Chédotal A (2011) Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer 11:188–197

    Article  PubMed  CAS  Google Scholar 

  57. Amodeo V, Deli A, Betts J, Bartesaghi S, Zhang Y, Richard-Londt A, Ellis M, Roshani R, Vouri M, Galavotti S, Oberndorfer S, Leite AP, Mackay A, Lampada A, Stratford E, Li N, Dinsdale D, Grimwade D, Jones C, Nicotera P, Michod D, Brandner S, Salomoni P (2017) A PML/Slit axis controls physiological cell migration and cancer invasion in the CNS. Cell Rep 20:411–426

    Article  PubMed  CAS  Google Scholar 

  58. Ballard MS, Hinck L (2012) A roundabout way to cancer. Adv Cancer Res 114:187–235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhou WJ, Geng ZH, Chi S, Zhang W, Niu XF, Lan SJ, Ma L, Yang X, Wang LJ, Ding YQ, Geng JG (2011) Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res 21(4):609–626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Yang XM, Han HX, Sui F, Dai YM, Chen M, Geng JG (2010) Slit-Robo signaling mediates lymphangiogenesis and promotes tumor lymphatic metastasis. Biochem Biophys Res Commun 396(2):571–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhang B, Dietrich UM, Geng JG, Bicknell R, Esko JD, Wang L (2009) Repulsive axon guidance molecule Slit3 is a novel angiogenic factor. Blood 114:4300–4309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wang B, Xiao Y, Ding BB, Zhang N, Yuan XB, Gui L, Qian KX, Duan S, Chen Z, Rao Y, Geng JG (2003) Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4(1):19–29

    Article  PubMed  Google Scholar 

  63. Kong R, Yi F, Wen P, Liu J, Chen X, Ren J, Li X, Shang Y, Nie Y, Wu K, Fan D, Zhu L, Feng W, Wu JY (2015) Myo9b is a key player in SLIT/ROBO-mediated lung tumor suppression. J Clin Invest 125(12):4407–4420

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dunwell TL, Dickinson RE, Stankovic T, Dallol A, Weston V, Austen D, Catchpoole D, Maher ER, Latif F (2009) Frequent epigenetic inactivation of the SLIT2 gene in chronic and acute lymphocytic leukemia. Epigenetics 4(4):265–269

    Article  PubMed  CAS  Google Scholar 

  65. Huang P, Kishida S, Cao D, Murakami-Tonami Y, Mu P (2011) The neuronal differentiation factor NeuroD1 downregulates the neuronal repellent factor Slit2 expression and promotes cell motility and tumor formation of neuroblastoma. Cancer Res 71(8):2938–2948

    Article  PubMed  CAS  Google Scholar 

  66. Vaughen J, Igaki T (2016) Slit-Robo repulsive signaling extrudes tumorigenic cells from epithelia. Dev Cell 39:683–695

    Article  PubMed  CAS  Google Scholar 

  67. Jacobi A, Schmalz A, Bareyre FM (2014) Abundant expression of guidance and synaptogenic molecules in the injured spinal cord. PLoS One 9(2):e88449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Giger RJ, Hollis ER, Tuszynski MH (2010) Guidance molecules in axon regeneration. Cold Spring Harb Perspect Biol 2(7):a001867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by an operating grant from the Canadian Institutes of Health Research (CIHR), bridge funding from Alberta Innovates-Health Solutions (AI-HS), salary awards from the CIHR Training Program in Genetic Determinants of Maternal and Child Health to JLJY, and from AI-HS to SM. We extend our thanks to M. Servetnick for fgfr24 probes and dominant negative constructs. We appreciate the feedback on the data from Drs. Schuurmans and Nguyen and guidance in qPCR from Dr. Visser.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah McFarlane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 81 kb)

Supplementary material 2 (TIFF 12428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, JL.J., Bertolesi, G.E., Hehr, C.L. et al. Fibroblast growth factor receptor 1 signaling transcriptionally regulates the axon guidance cue slit1. Cell. Mol. Life Sci. 75, 3649–3661 (2018). https://doi.org/10.1007/s00018-018-2824-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2824-x

Keywords

Navigation