Skip to main content
Log in

Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 13 September 2013

Abstract

Muscarinic acetylcholine receptors (mAChRs) play a central role in the mammalian nervous system. These receptors are G protein-coupled receptors (GPCRs), which are activated by the agonists acetylcholine and muscarine, and blocked by a variety of antagonists. Mammals have five mAChRs (m1–m5). In this study, we cloned two structurally related GPCRs from the fruit fly Drosophila melanogaster, which, after expression in Chinese hamster ovary cells, proved to be muscarinic acetylcholine receptors. One mAChR (the A-type; encoded by gene CG4356) is activated by acetylcholine (EC50, 5 × 10−8 M) and muscarine (EC50, 6 × 10−8 M) and blocked by the classical mAChR antagonists atropine, scopolamine, and 3-quinuclidinyl-benzilate (QNB), while the other (the B-type; encoded by gene CG7918) is also activated by acetylcholine, but has a 1,000-fold lower sensitivity to muscarine, and is not blocked by the antagonists. A- and B-type mAChRs were also cloned and functionally characterized from the red flour beetle Tribolium castaneum. Recently, Haga et al. (Nature 2012, 482: 547–551) published the crystal structure of the human m2 mAChR, revealing 14 amino acid residues forming the binding pocket for QNB. These residues are identical between the human m2 and the D. melanogaster and T. castaneum A-type mAChRs, while many of them are different between the human m2 and the B-type receptors. Using bioinformatics, one orthologue of the A-type and one of the B-type mAChRs could also be found in all other arthropods with a sequenced genome. Protostomes, such as arthropods, and deuterostomes, such as mammals and other vertebrates, belong to two evolutionarily distinct lineages of animal evolution that split about 700 million years ago. We found that animals that originated before this split, such as cnidarians (Hydra), had two A-type mAChRs. From these data we propose a model for the evolution of mAChRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CHO:

Chinese hamster ovary

mAChR:

Muscarinic acetylcholine receptor

MYR:

Million years

QNB:

3-Quinuclidinyl-benzylate

qPCR:

Quantitative PCR

References

  1. Douzéry EJ, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386–15391

    Article  PubMed  Google Scholar 

  2. Yakel JL (2010) Gating of nicotinic Ach receptors: latest insights into ligand binding and function. J Physiol 588:597–602

    Article  PubMed  CAS  Google Scholar 

  3. Millar NS, Harkness PC (2008) Assembly and trafficking of nicotinic acetylcholine receptors (Review). Mol Membr Biol 25:279–292

    Article  PubMed  CAS  Google Scholar 

  4. Jones AK, Sattelle DB (2010) Diversity of insect nicotinic acetylcholine receptor subunits. Adv Exp Med Biol 683:25–43

    Article  PubMed  CAS  Google Scholar 

  5. Dupuis J, Louis T, Gauthier M, Raymond V (2012) Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: from genes to behavioral functions. Neurosci Biobehav Rev 36:1553–1564

    Article  PubMed  CAS  Google Scholar 

  6. Bubser M, Byun N, Wood MR, Jones CK (2012) Muscarinic receptor pharmacology and circuitry for the modulation of cognition. Hanb Exp Pharmacol 208:121–166

    Article  CAS  Google Scholar 

  7. Tobin G, Giglio D, Lundgren O (2009) Muscarinic receptor subtypes in the alimentary tract. J Physiol Pharmacol 60:3–21

    PubMed  CAS  Google Scholar 

  8. Harvey RD (2012) Muscarinic receptor agonists and antagonists: effects on cardiovascular function. Hanb Exp Pharmacol 208:299–316

    Article  CAS  Google Scholar 

  9. Shapiro RA, Wakimoto BT, Subers EM, Nathanson NM (1989) Characterization and functional expression in mammalian cells of genomic and cDNA clones encoding a Drosophila muscarinic acetylcholine receptor. Proc Natl Acad Sci USA 86:9039–9043

    Article  PubMed  CAS  Google Scholar 

  10. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-CPR data by geometric averaging of multiple internal control genes. Genome Biol 3:R0034.1–R0034.11

    Article  Google Scholar 

  11. Stables J, Green A, Marshall F, Fraser N, Knight E, Sautel M, Milligan G, Lee M, Rees S (1997) A bioluminescent assay for agonist activity at potentially any G-protein-coupled receptor. Anal Biochem 252:115–126

    Article  PubMed  CAS  Google Scholar 

  12. Secher T, Lenz C, Cazzamali G, Sørensen G, Williamson M, Hansen GN, Svane P, Grimmelikhuijzen CJP (2001) Molecular cloning of a functional allatostatin gut/brain receptor and an allatostatin preprohormone from the silkworm Bombyx mori. J Biol Chem 276:47052–47060

    Article  PubMed  CAS  Google Scholar 

  13. Staubli F, Jørgensen TJD, Cazzamali G, Williamson M, Lenz C, Søndergaard L, Roepstorff P, Grimmelikhuijzen CJP (2002) Molecular identification of the insect adipokinetic hormone receptors. Proc Natl Acad Sci USA 99:3446–3451

    Article  PubMed  CAS  Google Scholar 

  14. Millar NS, Baylis HA, Reaper C, Bunting R, Mason WT, Sattelle DB (1995) Functional expression of a cloned Drosophila muscarinic acetylcholine receptor in a stable Drosophila cell line. J Exp Biol 198:1843–1850

    PubMed  CAS  Google Scholar 

  15. Onai T, FitzGerald MG, Arakawa S, Gocayne JD, Urquhart DA, Hall LM, Fraser CM, McCombie WR, Venter JC (1989) Cloning, sequence analysis and chromosome localization of a Drosophila muscarinic acetylcholine receptor. FEBS Lett 255:219–225

    Article  PubMed  CAS  Google Scholar 

  16. Brody T, Cravchik A (2000) Drosophila melanogaster G protein-coupled receptors. J Cell Biol 150:F83–F88

    Article  PubMed  CAS  Google Scholar 

  17. Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJP (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 80:1–19

    Article  PubMed  CAS  Google Scholar 

  18. Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Grimmelikhuijzen CJP (2008) A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol 29:142–165

    Article  PubMed  CAS  Google Scholar 

  19. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure and function of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551

    Article  PubMed  CAS  Google Scholar 

  20. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–556

    Article  PubMed  CAS  Google Scholar 

  21. Blüml K, Mutschler E, Wess J (1994) Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all muscarinic acetylcholine receptors. J Biol Chem 269:18870–18876

    PubMed  Google Scholar 

  22. Ward SD, Curtis CA, Hulme EC (1999) Alanine-scanning mutagenesis of transmembrane domain 6 of the M(1) muscarinic acetylcholine receptor suggests that Tyr381 plays key roles in receptor function. Mol Pharmacol 56:1031–1041

    PubMed  CAS  Google Scholar 

  23. Lee Y-S, Park Y-S, Chang DJ, Hwang JM, Min CK, Kaang B-K, Cho NJ (1999) Cloning and expression of a G protein-linked acetylcholine receptor from Caenorhabditis elegans. J Neurochem 72:58–65

    Article  PubMed  CAS  Google Scholar 

  24. Lee Y-S, Park Y-S, Nam S, Suh S-J, Lee J, Kaang B-K, Cho NJ (2000) Characterization of GAR-2, a novel G protein-linked acetylcholine receptor from Caenorhabditis elegans. J Neurochem 75:1800–1809

    Article  PubMed  CAS  Google Scholar 

  25. Park Y-S, Cho T-J, Cho NJ (2006) Stimulation of cyclic AMP production by the Caenorhabditis elegans muscarinic acetylcholine receptor GAR-3 in Chinese hamster ovary cells. Arch Biochem Biophys 450:203–207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Johannes Thomsen for typing the manuscript, and the Danish Research Agency, Novo Nordisk Foundation, and Carlsberg Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelis J. P. Grimmelikhuijzen.

Additional information

Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. JQ860106, JQ860107, JQ922420, JQ922421, JX028234, JX028235, JX174094).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 976 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collin, C., Hauser, F., de Valdivia, E.G. et al. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods. Cell. Mol. Life Sci. 70, 3231–3242 (2013). https://doi.org/10.1007/s00018-013-1334-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1334-0

Keywords

Navigation