Skip to main content
Log in

Calculation of ionic diffusion coefficients on the basis of migration test results

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Migration tests are now commonly used to estimate the diffusion coefficients of cement-based materials. Over the past decade, various approaches have been proposed to analyze migration test results. In many cases, the interpretation of test data is based on a series of simplifying assumptions. However, a thorough analysis of the various transport mechanisms that take place during a migration experiment suggests that some of them are probably not valid. Consequently, a more rigorous approach to analyze migration test results is presented. The test procedure is relatively simple and consists in measuring the evolution of the electrical current passing through the sample. Experimental results are then analyzed using the extended Nernst-Planck-Poisson set of equations. A simple algorithm is used to determine for each experiment the tortuosity factor that allows to best reproduce the current curve measured experimentally. The main advantage of this approach resides in the fact that the diffusion coefficients of all ionic species present in the system can be calculated using a single series of data. Typical examples of the application of this method are given. Results indicate that the diffusion coefficients calculated using this approach are independent of the applied voltage and depends only slightly on the concentration level and the chemical make-up of the upstream cell solution.

Résumé

Les essais de migration sont maintenant couramment utilisés pour estimer les coefficients de diffusion des matériaux cimentaires. Récemment, différentes approches ont été proposées pour analyser les résultats de l’essai de migration. Dans la plupart des cas, l’analyse des mesures est basée sur une série d’hypothèses simplificatrices. Cependant, une étude détaillée des mécanismes de transport des ions présents durant l’essai de migration révèle que certaines de ces hypothèses sont probablement incorrectes. Une approche plus rigoureuse de l’analyse des résultats de l’essai de migration est donc présentée. La méthode consiste à mesurer les courants électriques traversant l’échantillon durant l’essai. Ces résultats sont ensuite analysés à l’aide du système d’équations Nernst-Planck—Poisson. Un algorithme numérique permet de trouver pour chaque essai le facteur de tortuosité permettant de reproduire au mieux la courbe de courant mesurée expérimentalement. L’avantage principal de cette méthode est qu’elle permet de calculer le coefficient de diffusion de chacune des espèces ioniques présente dans le matériau sur la base de cette seule mesure de courant. Des exemples d’utilisation de la méthode sont décrits. Les résultats montrent que les coefficients de diffusion évalués selon cette approche sont indépendants du voltage appliqué au cour de l’essai et qu’ils ne dépendent que très légèrement du niveau de concentration et du type de solution utilisé dans le bac amont du montage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Marchand, J., Samson, E., Maltais, Y., Lee, R.J. and Sahu, S., ‘Predicting the performance of concrete structures exposed to chemically aggressive environments—Field validation’,Materials and Structures 35 (2002) 623–631.

    Article  Google Scholar 

  2. Snyder, K.A. and Clifton, J.R., ‘4SIGHT: A computer program for modeling degradation of underground low level concrete vaults’ in NISTIR 5612 (National Institute of Standards and Technology, USA, 1995).

    Google Scholar 

  3. Feldman, R.F., ‘Pore structure, permeability and diffusivity as related to durability’, Eighth International Congress on the Chemistry of Cement, Vol. 1, Theme 4 (Rio de Janeiro, Brazil, 1986).

  4. Marchand, J., Gérard, B. and Delagrave, A., ‘Ion transport mechanisms in cement-based materials’ in ‘Materials Science of Concrete, Vol. 5’ (American Ceramic Society, 1998) 307–400.

  5. Nilsson, L.O., Poulsen, E., Sandberg, P., Sørensen, H.E. and Klinghoffer, O., ‘HETEK—Chloride penetration into concrete’ in ‘Report no. 53, The Road Directorate’ (Copenhagen, Denmark, 1996).

  6. El-Belbol, S.M. and Buenfeld, N.R., ‘Accelerated chloride ion diffusion tests’, in ‘Pore Structure and Permeability of Cementitious Materials’137 (Materials Research Symposium Proceedings, L.R. Roberts and J.P. Skalny eds., 1989) 203–208.

  7. Tumidajski, P.J., ‘A rapid test for sulfate ingress into concrete’,Cement and Concrete Research 25 (1995) 924–928.

    Article  Google Scholar 

  8. Tang, L. and Nilsson, L.O., ‘Rapid determination of the chloride diffusivity in concrete by applying an electrical field’,ACI Materials Journal 89 (1992) 49–53.

    Google Scholar 

  9. Tang, L. and Nilsson, L.O., ‘A new approach to the determination of pore distribution by penetrating chlorides into concrete’,Cement and Concrete Research 25 (1995) 695–701.

    Article  Google Scholar 

  10. Streicher, P.E. and Alexander, M.G., ‘A chloride conduction test for concrete’,Cement and Concrete Research 25 (1995) 1284–1294.

    Article  Google Scholar 

  11. Tang, L., ‘Electrically accelerated methods for determining chloride diffusivity in concrete’,Magazine of Concrete Research 48 (1996) 173–179.

    Article  Google Scholar 

  12. Liu, Z. and Beaudoin, J.J., ‘The permeability of cement systems to chloride ingress and related test methods’,Cement Concrete and Aggregates 22 (2000) 16–23.

    Article  MATH  Google Scholar 

  13. Snyder, K.A., Ferraris, C., Martys, N.S. and Garboczi E.J., ‘Using impedance spectroscopy to assess the viability of the rapid chloride test for determining concrete conductivity’,Journal of Research of the National Institute of Standards and Technology 105 (2000) 497–509.

    Google Scholar 

  14. Taylor, H.F.W., ‘Cement chemistry’, (Academic Press Inc., San Diego, USA, 1990).

    Google Scholar 

  15. Skalny, J., Marchand, J. and Odler, I., ‘Sulfate attack of concrete’, (E and FN Spon, London, UK 2001).

    Google Scholar 

  16. Helfferich, F., ‘Ion exchange’, (McGraw-Hill, USA, 1961).

    Google Scholar 

  17. Bear, J. and Bachmat, Y., ‘Introduction to modeling of transport phenomena in porous media’, (Kluwer Academic Publishers, Amsterdam, The Netherlands, 1991).

    MATH  Google Scholar 

  18. Samson, E., Marchand, J. and Beaudoin, J.J., ‘Describing ion diffusion mechanisms in cement-based materials using the homogenization technique’,Cement and Concrete Research 29 (1999) 1341–1345.

    Article  Google Scholar 

  19. Marchand, J., ‘Modeling the behavior of unsaturated cement systems exposed to aggressive chemical environments’,Materials and Structures 34 (2001) 195–200.

    Article  Google Scholar 

  20. Weast, R.C., Astle, M.J. and Beyer, W.H., ‘CRC Handbook of chemistry and physics’, 66th Edn. (CRC Press, Florida, USA, 1986).

    Google Scholar 

  21. Jackson, J.D., ‘Classical electrodynamics’, 2nd Edn. (John Wiley & Sons, New York, USA 1975).

    MATH  Google Scholar 

  22. Samson, E., Lemaire, G., Marchand, J. and Beaudoin, J.J., ‘Modeling chemical activity effects in strong ionic solutions’,Computational Materials Science 15 (1999) 285–294.

    Article  Google Scholar 

  23. Daian, J.-F., ‘Condensation and isothermal water transfer in cement mortar—Part 1: Pore size distribution, equilibrium water condensation and imbibition’,Transport in porous media 3 (1988) 563–589.

    Article  Google Scholar 

  24. Barbarulo, R., Marchand, J., Snyder, K.A. and Prené, S., ‘Dimensional analysis of ionic transport problems in hydrated cement systems—Part 1: Theoretical considerations’,Cement and Concrete Research 30 (2000) 1955–1960.

    Article  Google Scholar 

  25. Samson, E., Marchand, J. and Beaudoin, J.J., ‘Modeling the influence of chemical reactions on the mechanisms of ionic transport in porous materials: an overview’,Cement and Concrete Research 30 (2000) 1895–1902.

    Article  Google Scholar 

  26. Tang, L. and Nilsson, L.O., ‘Chloride binding capacity and binding isotherms of OPC pastes and mortars’,Cement and Concrete Research 23 (1993) 247–253.

    Article  Google Scholar 

  27. Damidot, D. and Glasser, F.P., ‘Thermodynamic investigation of the CaO−Al2O3−CaSO4−CaCl2−H2O system at 25°C and the influence of Na2O’, 10th Congress on the Chemistry of Cement, Gothernburg, Sweden (1997).

  28. Damidot, D. and Glasser, F.P., ‘Thermodynamic investigation of the CaO−Al2O3−CaSO4−H2O system at 25°C and the influence of Na2O’,Cement and Concrete Research 23 (1993) 221–238.

    Article  Google Scholar 

  29. Barbarulo, R., Marchand, J. and Snyder, K.A., ‘Dimensional analysis of ionic transport problems in hydrated cement systems Part 2. Application to various practical problems’ (2003) (in preparation).

  30. Rubin, J., ‘Transport of reacting solutes in porous media: relation between mathematical nature of problem formulation and chemical nature of reactions’,Water Resources Research 19 (1983) 1231–1252.

    Google Scholar 

  31. Castellote, M., Andrade, C. and Alonso, C., ‘Chloride-binding isotherms in concrete submitted to non-steady-state migration experiments’,Cement and Concrete Research 29 (1998) 1799–1806.

    Article  Google Scholar 

  32. Samson, E., Marchand, J., Robert, J.-L. and Bournazel, J.-P., ‘Modelling ion diffusion mechanisms in porous media’,International Journal for Numerical Methods in Engineering,46 (1999) 2043–2060.

    Article  MATH  MathSciNet  Google Scholar 

  33. Samson, E. and Marchand, J., ‘Numerical solution of the extended Nernst-Planck model’,Journal of Colloid and Interface Science 215 (1999) 1–8.

    Article  MATH  Google Scholar 

  34. Andrade, C., ‘Calculation of chloride diffusion coefficients in concrete from ionic migration measurements’,Cement and Concrete Research 23 (1993) 724–742.

    Article  Google Scholar 

  35. McGrath, P.F. and Hooton, R.D., ‘Influence of voltage on chloride diffusion coefficients from chloride migration tests’,Cement and Concrete Research 26 (1996) 1239–1244.

    Article  Google Scholar 

  36. Truc, O., Ollivier, J.P. and Carcassès, M., ‘A new way for determining the chloride diffusion coefficient in concrete from steady-state migration test’,Cement and Concrete Research 30 (2000) 217–226.

    Article  Google Scholar 

  37. Zhang, T. and Gjørv, O.E., ‘An electrochemical method for accelerated testing of chloride diffusivity in concrete’,Cement and Concrete Research 24 (1994) 1534–1548.

    Article  Google Scholar 

  38. Tang, L. and Nilsson, L.O., ‘Rapid determination of the chloride diffusivity in concrete by applying an electrical field’,ACI Materials Journal 89 (1992) 49–53.

    Google Scholar 

  39. Hauck, K., ‘The effect of curing temperature and silica fume on chloride migration and pore structure of high-strength concrete’,Ph.D. Thesis (Department of Civil Engineering, University of Trondheim, Norway 1993).

    Google Scholar 

  40. Andrade, C., Sanjuan, M.A., Recuero, A. and Rio, O., ‘Calculation of chloride diffusivity in concrete from migration experiments in non steady-sate conditions’,Cement and Concrete Research 24 (1994) 1214–1228.

    Article  Google Scholar 

  41. Tang, L. and Nilsson, L.O., ‘A discussion of the paper: Calculation of chloride diffusivity in concrete from migration experiments in non-steady-state conditions’,Cement and Concrete Research 25 (1995) 1133–1137.

    Article  Google Scholar 

  42. Andrade, C., Cervigon, C., Recuero, A. and Rio, O., ‘A reply to the discussion by L. Tang and L.O. Nilsson of the paper-Calculation of chloride diffusivity in concrete from migration experiments in non-steady state conditions’,Cement and Concrete Research 25 (1995) 1138–1144.

    Article  Google Scholar 

  43. Xu, A. and Chandra, S., ‘A discussion of the paper: Calculation of chloride diffusion coefficients in concrete from ionic migration measurements’,Cement and Concrete Research 24 (1994) 375–379.

    Article  Google Scholar 

  44. Gautefall, O., ‘Effect of condensed silica fume on the diffusivity of chlorides through hardened cement paste’,ACI Special Publication 91 (1986) 991–997.

    Google Scholar 

  45. Gautefall, O. and Havdahl, J., ‘Effect of condensed silica fume on the mechanisms of chloride diffusion into hardened cement paste’,ACI Special Publication 114 (1989) 849–860.

    Google Scholar 

  46. Barneyback, R.S. and Diamond, S., ‘Expression and analysis of pore fluid from hardened cement pastes and mortars’,Cement and Concrete Research 11 (1981) 279–285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Laval University (Canada) and NIST (USA) are RILEM Titular Members. Prof. Jacques Marchand was awarded the 2000 Robert L’Hermite Medal. He is Editor in Chief forConcrete Science and Engineering and Associate Editor forMaterials and Structures. He participates in RILEM TC 186-ISA ‘Internal sulfate attack’. Prof. Kenneth A. Snyder is a RILEM Senior Member. He participates in RILEM TC ICC ‘Internal curing of concretes’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samson, E., Marchand, J. & Snyder, K.A. Calculation of ionic diffusion coefficients on the basis of migration test results. Mat. Struct. 36, 156–165 (2003). https://doi.org/10.1007/BF02479554

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479554

Keywords

Navigation