Skip to main content
Log in

Two models for transforming auditory signals from head-centered to eye-centered coordinates

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Two models for transforming auditory signals from head-centered to eye-centered coordinates are presented. The vector subtraction model subtracts a rate-coded eye position signal from a topographically weighted auditory target position signal to produce a rate-code of target location with respect to the eye. The rate-code is converted into a place-code through a graded synaptic weighting scheme and inhibition. The dendrite model performs a mapping of head-centered auditory space onto the dendrites of eye-centered units. Individual dendrites serve as logical comparators of target location and eye position. Both models produce a topographic map of auditory space in eye-centered coordinates like that found in the primate superior colliculus. Either type can be converted into a model for transforming visual signals from retinal to head-centered coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aitkin L, Martin R (1990) Neurons in the inferior colliculus of cats sensitive to sound-source elevation. Hearing Res 50:97–106

    Article  CAS  Google Scholar 

  • Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458

    CAS  PubMed  Google Scholar 

  • Andersen RA, Essick GK, Siegel RM (1987) Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Exp Brain Res 67:316–322

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA, Zipser D (1988) The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. Can J Physiol Pharmacol 66:488–501

    CAS  PubMed  Google Scholar 

  • Becker W, Jurgens R (1979) An analysis of the saccadic system by means of double step stimuli. Vision Res 19:967–983

    Article  CAS  PubMed  Google Scholar 

  • Bizzi E (1968) Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp Brain Res 6:69–80

    Article  CAS  PubMed  Google Scholar 

  • Clarey JC, Irvine DRF (1986) Auditory response properties of neurons in the anterior ectosylvian sulcus of the cat. Brain Res 386:12–19

    Article  CAS  PubMed  Google Scholar 

  • Clarey JC, Irvine DRF (1990) The anterior ectosylvian sulcal auditory field in the cat: I. An electrophysiological study of its relationship to surrounding auditory cortical fields. J Comp Neurol 301:289–303

    Article  CAS  PubMed  Google Scholar 

  • Clemo HR, Stein BE (1983) Organization of a fourth somatosensory area of cortex in cat. J Neurophys 50:910–925

    CAS  Google Scholar 

  • Clemo HR, Stein BE (1986) Effects of cooling somatosensory cortex on response properties of tactile cells in the superior colliculus. J Neurophys 55:1352–1368

    CAS  Google Scholar 

  • Fries W (1984) Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. J Comp Neurol 230:55–76

    Article  CAS  PubMed  Google Scholar 

  • Goodman SJ, Andersen RA (1989) Microstimulation of a neural-network model for visually guided saccades. J Cog Neuro 1:317–326

    Google Scholar 

  • Groh JM, Sparks DL (1991) A model for transforming auditory signals from head-centered to oculomotor error coordinates. Soc Neuro Abs 17:458

    Google Scholar 

  • Hardy SC, Stein BE (1988) Small lateral suprasylvian cortex lesions produce visual neglect and decreased visual activity in the superior colliculus. J Comp Neurol 273:527–542

    Article  CAS  PubMed  Google Scholar 

  • Jay MF, Sparks DL (1984) Auditory receptive fields in primate superior colliculus shift with changes in eye position. Nature 309:345–347

    Article  CAS  PubMed  Google Scholar 

  • Jay MF, Sparks DL (1987a) Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J. Neurophys 57:22–34

    CAS  Google Scholar 

  • Jay MF, Sparks DL (1987b) Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. J Neurophys 57:35–55

    CAS  Google Scholar 

  • Keller EL (1974) Participation of medial pontine reticular formation in eye movement generation in monkey. J Neurophys 37:316–332

    CAS  Google Scholar 

  • Knudsen EI, Brainard MS (1991) Visual instruction of the neural map of auditory space in the developing optic tectum. Science 253:85–87

    CAS  PubMed  Google Scholar 

  • Knudsen EI, Esterly SD, DuLac S (1991) Stretched and upside-down maps of auditory space in the optic tectum of blind-reared owls: acoustic basis and behavioral correlates. J Neurosci 11:1727–1747

    CAS  PubMed  Google Scholar 

  • Knudsen EI, Knudsen PF (1985) Vision guides the adjustment of auditory localization in young barn owls. Science 230:545–548

    CAS  PubMed  Google Scholar 

  • Kuwada S, Stanford TR, Batra R (1989) Interaural phase-sensitive units in the inferior colliculus of the unanestetized rabbit: Effects of changing frequency. J Neurophys 57:1338–1360

    Google Scholar 

  • Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357–360

    Article  CAS  PubMed  Google Scholar 

  • Leinonen L, Hyvarinen J, Sovijarvi ARA (1980) Functional properties of neurons in the temporo-parietal association cortex of awake monkey. Exp Brain Res 39:203–215

    Article  CAS  PubMed  Google Scholar 

  • Luschei ES, Fuchs AF (1972) Activity of brain stem neurons during eye movements of alert monkeys. J Neurophys 35:445–461

    CAS  Google Scholar 

  • May PJ, Hartwich-Young R, Nelson J, Sparks DL, Porter JD (1990) Cerebellotectal pathways in the macaque: Implications for collicular generation of saccades. Neuroscience 36:305–324

    Article  CAS  PubMed  Google Scholar 

  • McCrea R, Baker R (1980) Evidence for the hypothesis that the prepositus nucleus distributes “efference copy” signals to the brainstem. Anat Res 196:122–123

    Google Scholar 

  • Meredith MA, Clemo HR (1989) Auditory cortical projection from the anterior ectosylvian sulcus (field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study. J Comp Neurol 289:687–707

    Article  CAS  PubMed  Google Scholar 

  • Meredith MA, Stein BE (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophys 56:640–662

    CAS  Google Scholar 

  • Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat's superior colliculus. J Neurosci 4:2621–2634

    CAS  PubMed  Google Scholar 

  • Noda H, Suzuki DA (1979) Processing of eye movement signals in the flocculus of the monkey. J Phys 294:349–364

    CAS  Google Scholar 

  • Olson CR, Graybiel AM (1987) Ectosylvian visual area of the cat: location, retinotopic organization, and connections. J Comp Neurol 261:277–294

    Article  CAS  PubMed  Google Scholar 

  • Peck CK, Baro JA, Warder SM (1992) Sensory integration in the deep layers of the superior colliculus. In: Molotchnikoff S, Hicks TP, Ono T (eds) The visually responsive neuron: from basic physiology to behavior, Progress in Brain Research. Elsevier, Amsterdam New York (in press)

    Google Scholar 

  • Robinson DA (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vision Res 12: 1795–1807

    Article  CAS  PubMed  Google Scholar 

  • Robinson DA, Fuchs AF (1969) Bye movements evoked by stimulation of frontal eye fields. J Neurophys 32:637–648

    CAS  Google Scholar 

  • Sjada P, Finkel LH (1992) NEXUS: A simulation environment for large-scale neural systems. Simulation (in press)

  • Schiller PH, True SD, Conway JL (1979) Paired stimulation of the frontal eye fields and the superior colliculus of the rhesus monkey. Brain Res 179:162–164

    Article  CAS  PubMed  Google Scholar 

  • Segal RL, Beckstead RM (1989) Distribution of corticotectal axons from the caudal part of the anterior estosylvian sulcus in the cat. Neurosci Lett 102:173–178

    Article  CAS  PubMed  Google Scholar 

  • Semple MN, Aitkin LM, Calford MB, Pettigrew JD, Phillips DP (1983) Spatial receptive fields in the cat inferior colliculus. Hearing Res 10:203–215

    Article  CAS  Google Scholar 

  • Shepherd GM, Koch C (1990) Introduction to synaptic circuits. In: Shepherd GM (ed) The synaptic organization of the brain. Oxford University Press, New York Oxford, pp 3–31

    Google Scholar 

  • Sparks DL, Hartwich-Young R (1989) The deep layers of the superior colliculus. In: Wurtz R, Goldberg ME (eds) The neurobiology of saccadic eye movements. Elsevier, Amsterdam New York

    Google Scholar 

  • Stein BE (1978) Nohequivalent visual, auditory, and somatic cortiotectal influences in cat. J Neurophys 41:55–64

    CAS  Google Scholar 

  • Van Opstal AJ, Van Gisbergen JAM (1990) Role of monkey superior colliculus in saccade averaging. Exp Brain Res 79:143–149

    PubMed  Google Scholar 

  • Vimal RLP, Kurylo DD, King AJ, Hartline PH (1989) Separating effects of volitional ear and eye positions on auditory receptive fields in cat superior colliculus. ARVO Abstract 30(3):181

    Google Scholar 

  • Wickelgren BJ (1971) Superior colliculus: some receptive field properties of bimodally responsive cells. Science 173:69–73

    CAS  PubMed  Google Scholar 

  • Zipser D, Andersen RA (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679–684

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groh, J.M., Sparks, D.L. Two models for transforming auditory signals from head-centered to eye-centered coordinates. Biol. Cybern. 67, 291–302 (1992). https://doi.org/10.1007/BF02414885

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02414885

Keywords

Navigation