Skip to main content
Log in

Linear and nonlinear electrode polarization and biological materials

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Electrode polarization is a major nuisance while determining dielectric properties of cell and particle suspensions and tissues, particularly at low frequencies. Understanding of these interfacial phenomena and appropriate modelling are essential in order to correct for its distortion of the dielectric properties of the sample of interest. I survey the following topics, concentrating on contributions from our laboratory:

Linear properties of electrode polarization and relevant models

Effects of electrode polarization on sample impedance

Effects of sample on polarization impedance

Techniques of correction

Extension of linear to nonlinear models

Harmonics generated in the nonlinear range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Buck, R.P. Impedances of thin and layered systems: Cells with even or odd numbers of interfaces. Ann. Biomed. Eng. 20:363–383; 1992.

    CAS  PubMed  Google Scholar 

  2. Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics. I. Alternating current characteristics. J. Chem. Phys. 9:341–351; 1941.

    CAS  Google Scholar 

  3. Davidson, D.W.; Cole, R.H. Dielectric relaxation in glycerine. J. Chem. Phys. 18:1417; 1950.

    Article  CAS  Google Scholar 

  4. de Levie, R. The admittance of the interface between a metal electrode and an aqueous electrolyte solution: Some problems and pitfalls. Ann. Biomed. Eng. 20:337–347; 1992.

    PubMed  Google Scholar 

  5. Fricke, H. The theory of electrolytic polarization. Phil. Mag. 14:310–318; 1932.

    CAS  Google Scholar 

  6. Geddes, L.A. Electrodes and the measurement of bioelectric events. New York: Wiley Interscience; 1972.

    Google Scholar 

  7. Geddes, L.A.; Baker, L.E. Principles of applied biomedical instrumentation. (2nd ed.) New York: Wiley Interscience; 1975.

    Google Scholar 

  8. Geddes, L.A.; DaCosta, C.P.; Wise, G. The impedance of stainless steel electrodes. Med. Biol. Eng. Comput. 9:511–521; 1971.

    CAS  Google Scholar 

  9. Geddes, L.A.; Foster, K.S.; Reilly, J.; Voorhees, W.D.; Bourland, J.D.; Ragheb, T.; Fearnot, N.E. The rectification properties of an electrode-electrolyte interface operated at high current density. IEEE Trans. Biomed. Eng. 34:669–672; 1987.

    CAS  PubMed  Google Scholar 

  10. Jaron, D.; Briller, S.A.; Schwan, H.P.; Geselowitz, D. Nonlinearity of pacemaker electrodes. IEEE Trans. Biomed. Eng. 16:132–138; 1969.

    CAS  PubMed  Google Scholar 

  11. Jaron, D.; Schwan, H.P.; Geselowitz, D.B. A mathematical model for the polarization impedance of cardiac pacemaker electrodes. Med. Biol. Eng. 6:579–594; 1968.

    CAS  PubMed  Google Scholar 

  12. Kohlrausch, F.; Holborn, L. “Das Leitvermoegen der Elektrolyte.” Leipzig: Teubner; 1898.

    Google Scholar 

  13. Kronig, R. On the theory of dispersion of x-rays. J. Opt. Soc. Am. 12:547; 1926 (See also Kramers, H.A. Atti Congr. dei Fisici. Como. 1927: p. 545.)

    CAS  Google Scholar 

  14. McAdams, E.T.; Jossinet, J. DC nonlinearity of the solid electrode-electrolyte interface-impedance. Innovation et Technologie en Biol. et Med. 12:329–343; 1991.

    Google Scholar 

  15. McAdams, E.T.; Jossinet, J. A physical interpretation of Schwan's limit current of linearity. Ann. Biomed. Eng. 20:307–319; 1992.

    CAS  PubMed  Google Scholar 

  16. Moussavi, M.; Sun, H.H.; Schwan, H.P.; Richter, A. Nonlinear phenomenon of interfacial polarization immittance of a Pt electrode. Ann. Biomed. Eng. 18:505–518; 1990.

    CAS  PubMed  Google Scholar 

  17. Onaral, B.; Schwan, H.P. Linear and nonlinear properties of platinum electrode polarization. Part I: Frequency dependence at very low frequencies. Med. Biol. Eng. Comp. 20:299–306; 1982a.

    CAS  Google Scholar 

  18. Onaral, B.; Schwan, H.P. Linear and nonlinear properties of platinum electrode polarization. Part II: Time domain analysis. Med. Biol. Eng. Comp. 21:210–216; 1982b.

    Google Scholar 

  19. Ragheb, T.; Geddes, L.A. Electrical properties of metallic electrodes. Med. Biol. Eng. Comp. 28:182–186; 1990.

    CAS  Google Scholar 

  20. Schwan, H.P. Electrical properties of tissues and cells. In: Lawrence, J.H.; Tobias, C.A., eds. Advances biological medical physics, Vol. 5 New York: Academic Press; 1957: pp. 147–209.

    Google Scholar 

  21. Schwan, H.P. Determination of biological impedances. In: Nastuk, W.L., ed. Physical techniques in biological research, Vol. 6. New York: Academic Press; 1963: pp. 323–406.

    Google Scholar 

  22. Schwan, H.P. Alternating current electrode polarization. Biophysik 3:181–201; 1966.

    Article  CAS  PubMed  Google Scholar 

  23. Schwan, H.P. Electrode polarization impedance and measurements in biological materials. Ann. New York Acad. Sci. 148:191–209; 1968.

    CAS  Google Scholar 

  24. Schwan, H.P.; Ferris, C.D. Four electrode null techniques for impedance measurement with high resolution. Rev. Sci. Inst. 39:481–485; 1968.

    Google Scholar 

  25. Schwan, H.P.; Maczuk, J.G. Electrode polarization impedance: Limits of linearity. Proc. 18th Ann. Conf. Med. Biol. IEEE-ISA. Philadelphia, PA: 1965.

  26. Schwan, H.P.; Onaral, B. Linear and nonlinear properties of platinum electrode polarization. Part III: Equivalence of frequency- and time domain behavior. Med. Biol. Eng. Comp. 23:28–32; 1985.

    CAS  Google Scholar 

  27. Schwan, H.P.; Sittel, K. Wheatstone bridge for admittance determinations of highly conducting materials at low frequencies. Trans. AIEE. (Comm. & Elec.) May:114; 1953.

  28. Simpson, R.W.; Berberian, J.G.; Schwan, H.P. Nonlinear AC and DC polarization of platinum electrodes. IEEE Trans. Biomed. Eng. 27:166–171; 1980.

    CAS  PubMed  Google Scholar 

  29. Sun, H.H.; Charef, A.; Tsao, Y.; Onaral, B. Analysis of polarization dynamics by singularity decomposition method. Ann. Biol. Eng. 20:321–335; 1992.

    CAS  Google Scholar 

  30. Sun, H.H.; Onaral, B. A unified approach to represent metal electrode polarization. IEEE Trans. Biomed. Eng. 30:399–406; 1983.

    CAS  PubMed  Google Scholar 

  31. Warburg, E. Ueber das Verhalten sogenannter unpolarisierbarer Elektroden gegen Wechselstrom. Ann. d. Physik 67:493–499; 1899.

    Google Scholar 

  32. Warburg, E. Ueber die Polarisationskapazitaet des Platins. Ann. d. Physik. 6:125–135; 1901.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwan, H.P. Linear and nonlinear electrode polarization and biological materials. Ann Biomed Eng 20, 269–288 (1992). https://doi.org/10.1007/BF02368531

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368531

Keywords

Navigation