Skip to main content
Log in

A potassium conductance activated by hyperpolarization in paramecium

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Voltage clamp studies show that the wild-type membrane ofParamecium tetraurelia contains a conductance component which is sensitive to hyperpolarization. This component manifests itself as “anomalous”, or “inward going”, rectification of membrane voltage in response to applied constant current pulses and as a “hyperpolarizing spike” when no K is added to the external solution (Y. Satow, C. Kung, 1977.J. Comp. Physiol. 119∶99). Like the conductances which underlie anomalous rectification in other cells, the hyperpolarization-sensitive conductance inParamecium is specific for K, and the magnitude of the voltage-dependent conductance change depends not only on voltage but also on external potassium concentration. The internal potassium ion concentration ofParamecium is calculated to be between 17 and 18mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian, R.H. 1958. The effects of membrane potential and external potassium concentration on the potassium permeability of muscle fibres.J. Physiol. (London) 143:59P

    Google Scholar 

  • Adrian, R.H. 1960. Potassium chloride movement and the membrane potential of frog muscle.J. Physiol. (London) 151:154

    Google Scholar 

  • Adrian, R.H. 1964. The rubidium and potassium permeability of frog muscle membrane.J. Physiol. (London) 173:134

    Google Scholar 

  • Adrian, R.H. 1969. Rectification in muscle membrane.Prog. Biophys. Mol. Biol. 19:339

    PubMed  Google Scholar 

  • Adrian, R.H., Freygang, W.H. 1962a. The potassium and chloride conductance of frog muscle membrane.J. Physiol. (London) 163:61

    Google Scholar 

  • Adrian, R.H., Freygang, W.H. 1962b. Potassium conductance of frog muscle membrane under controlled voltage.J. Physiol. (London) 163:104

    Google Scholar 

  • Armstrong, C.M. 1975. Potassium pores of nerve and muscle membranes.In: Membranes, A Series of Advances. George Eisenmann, editor. Vol. 3, pp. 325–358. Marcel Dekker, New York

    Google Scholar 

  • Armstrong, C.M., Binstock, L. 1965. Anomalous rectification in squid giant axon injected with tetraethylammonium chloride.J. Gen. Physiol. 48:859

    PubMed  Google Scholar 

  • Baumann, G., Mueller, P. 1974. A molecular model of membrane excitability.J. Supramol. Struct. 2:538

    PubMed  Google Scholar 

  • Chang, S.-Y., Kung, C. 1973a. Temperature-sensitive pawns: Conditional behavioral mutants ofParamecium aurelia.Science 180:1197

    PubMed  Google Scholar 

  • Chang, S.-Y., Kung, C. 1973b. Genetic analyses of heat-sensitive pawn mutants ofParamecium aurelia.Genetics 75:49

    Google Scholar 

  • Chang, S.-Y., Van Houten, J., Robles, L.J., Lui, S.S., Kung, C. 1974. An extensive behavioural and genetic analysis of the pawn mutants inParamecium aurelia.Genet. Res. 23:165

    PubMed  Google Scholar 

  • Dunlap, K. 1977. Localization of calcium channels inParamecium caudatum.J. Physiol. (London) 271:119

    Google Scholar 

  • Eckert, R. 1972. Bioelectric control of ciliary activity.Science 176:473

    PubMed  Google Scholar 

  • Eckert, R., Naitoh, Y. 1970. Passive electrical properties ofParamecium and problems of ciliary coordination.J. Gen. Physiol. 55:467

    PubMed  Google Scholar 

  • Grundfest, H. 1966. Comparative electrobiology of excitable membranes.In: Advances in Comparative Physiology and Biochemistry. O. Lowenstein, editor. Academic Press, New York

    Google Scholar 

  • Hagiwara, S., Miyazaki, S., Rosenthal, N.P. 1976. Potassium current and the effect of cesium on this current during anomalous rectification.J. Gen. Physiol. 67:621

    PubMed  Google Scholar 

  • Hansma, H. 1974. Biochemical studies on the behavioral mutants ofParamecium aurelia: Ion fluxes and ciliary membrane proteins. Ph.D. Thesis, p. 58. University of California at Santa Barbara

  • Hodgkin, A.L., Huxley, A.F. 1952. The components of membrane conductance in the giant axon ofLoligo.J. Physiol. (London) 116:473

    Google Scholar 

  • Horowicz, P., Gage, P.W., Eisenburg, R.S. 1968. The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle.J. Gen. Physiol. 51:193S

    Google Scholar 

  • Katz, B. 1949. Les constantes electriques de la membrane du muscle.Arch. Sci. Physiol. 3:285

    Google Scholar 

  • Kung, C. 1971a. Genic mutations with altered system of excitation inParamecium aurelia. I. Phenotypes of the behavioural mutants.Z. Vgl. Physiol. 71:142

    Google Scholar 

  • Kung, C. 1971b. Genic mutants with altered system of excitation inParamecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants.Genetics 69:29

    PubMed  Google Scholar 

  • Kung, C., Chang, S.-Y., Satow, Y., Van Houten, J., Hansma, H. 1975. Genetic dissection of behavior inParamecium.Science 188:898

    PubMed  Google Scholar 

  • Kung, C., Eckert, R. 1972. Genetic modification of electric properties in an excitable membrane.Proc. Nat. Acad. Sci. USA 69:93

    PubMed  Google Scholar 

  • Kung, C., Naitoh, Y. 1972. Calcium-induced ciliary reversal in the extracted models of “pawn”, a behavioral mutant ofParamecium.Science 179:195

    Google Scholar 

  • Machemer, H. 1976. Interactions of membrane potential and cations in regulation of ciliary activity inParamecium.J. Exp. Biol. 65:427

    PubMed  Google Scholar 

  • Machemer, H., Eckert, R. 1975. Ciliary frequency and orientation responses to clamped voltage steps inParamecium.J. Comp. Physiol. 104:247

    Google Scholar 

  • Meech, R.W., Standen, N.B. 1975. Potassium activation inHelix aspersa neurones under voltage clamp: A component mediated by calcium influx.J. Physiol. (London) 249:211

    Google Scholar 

  • Miyazaki, S., Ohmori, H., Sasaki, S. 1975a. Action potential and non-linear current-voltage relation in starfish oocytes.J. Physiol. (London) 246:37

    Google Scholar 

  • Miyazaki, S., Ohmori, H., Sasaki, S. 1975b. Potassium rectifications of the starfish oocyte membrane and their changes during oocyte maturation.J. Physiol. (London) 246:55

    Google Scholar 

  • Miyazaki, S., Takahashi, K., Tsuda, K., Yoshii, M. 1974. Analysis of non-linearity observed in the current-voltage relation of the tunicate embryo.J. Physiol. (London) 238:55

    Google Scholar 

  • Naitoh, Y., Eckert, R. 1968. Electrical properties ofParamecium caudatum: Modification by bound and free cations.Z. Vgl. Physiol. 61:427

    Google Scholar 

  • Naitoh, Y., Eckert, R. 1972. Electrophysiology of ciliate protozoa.Exp. Physiol. Biochem. 5:17

    Google Scholar 

  • Naitoh, Y., Eckert, R. 1973. Sensory mechanisms inParamecium. II. Ionic basis of the hyperpolarizing mechanoreceptor potential.J. Exp. Biol. 59:53

    Google Scholar 

  • Nakajima, S., Iwasaki, S., Obata, K. 1962. Delayed rectification and anomalous rectification in frog's skeletal muscle membrane.J. Gen. Physiol. 46:97

    PubMed  Google Scholar 

  • Nakamura, Y., Nakajima, S., Grundfest, H. 1965. Analysis of spike electrogenesis and depolarizing K inactivation in electroplaques ofElectrophorus electricus, L.J. Gen. Physiol. 49:321

    Article  Google Scholar 

  • Noble, D. 1962. A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials.J. Physiol. (London) 160:317

    Google Scholar 

  • Oertel, D., Schein, S.J., Kung, C. 1977. Separation of membrane currents using aParamecium mutant.Nature (London) 268:120

    Google Scholar 

  • Satow, Y., Chang, S.-Y., Kung, C. 1974. Membrane excitability: Made temperature-dependent by mutations.Proc. Nat. Acad. Sci. USA 71:2703

    PubMed  Google Scholar 

  • Satow, Y., Hansma, H., Kung, C. 1976. The effect of sodium on “Paranoiac”—A membrane mutant ofParamecium.Comp. Biochem. Physiol. 54A:323

    Google Scholar 

  • Satow, Y., Kung, C. 1976a. A ‘TEA+-insensitive’ mutant with increased potassium conductance inParamecium aurelia.J. Exp. Biol. 65:51

    PubMed  Google Scholar 

  • Satow, Y., Kung, C. 1976b. A mutant ofParamecium with increased relative resting potassium permeability.J. Neurobiol. 7:325

    PubMed  Google Scholar 

  • Satow, Y., Kung, C. 1976c. Mutants with reduced Ca activation inParamecium aurelia.J. Membrane Biol. 28:277

    Google Scholar 

  • Satow, Y., Kung, C. 1977. A regenerative hyperpolarization inParamecium.J. Comp. Physiol. 119:99

    Google Scholar 

  • Schein, S.J. 1976a. Nonbehavioral selection for pawns, mutants ofParamecium aurelia with decreased excitability.Genetics 84:453

    PubMed  Google Scholar 

  • Schein, S.J. 1976b. Calcium channel stability measured by gradual loss of excitability in pawn mutants ofParamecium aurelia.J. Exp. Biol. 65:725

    PubMed  Google Scholar 

  • Schein, S.J., Bennett, M.V.L., Katz, G. 1976. Altered calcium conductance in pawns, behavioural mutants ofParamecium aurelia.J. Exp. Biol. 65:699

    PubMed  Google Scholar 

  • Sonneborn, T.M. 1975. TheParamecium aurelia complex of 14 sibling species.Trans. Am. Microsc. Soc. 94:155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oertel, D., Schein, S.J. & Kung, C. A potassium conductance activated by hyperpolarization in paramecium. J. Membrain Biol. 43, 169–185 (1978). https://doi.org/10.1007/BF01933477

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01933477

Keywords

Navigation