Skip to main content
Log in

The synaptic organization of the dopaminergic amacrine cell in the cat retina

  • Published:
Journal of Neurocytology

Summary

The dopaminergic amacrine cells of the cat retina have been stained by immunocytochemistry using an antibody to tyrosine hydroxylase (Toh). The complete population of Toh+cells has been studied by light microscopy of retinal wholemounts to evaluate morphological details of dendritic structure and branching patterns. Selected Toh+amacrine cells have been studied by serial-section electron microscopy to analyse synaptic input and output relationships. The majority of Toh+amacrine cells occur in the amacrine cell layer of the retina and have their dendrites ramifying and forming the characteristic rings in stratum 1 of the inner plexiform layer. A minority of Toh+cells have cell bodies displaced to the ganglion cell layer but their dendrites also stratify in stratum 1. All Toh+cells have some dendritic branches running in stratum 2 as well as in stratum 1, and frequently they have long ‘axon-like’ processes (500–1000 μm long) dipping down to run in stratum 5 before passing up to rejoin the major dendritic arbors in stratum 1. In addition Toh+stained processes follow blood vessels in the inner plexiform layer and in the ganglion cell layer. A population of Toh+cells found in the inferior retina appears to give rise to stained processes that pass to the outer plexiform layer and therein to run for as far as one millimeter.

Electron microscopy reveals that Toh+amacrine cells are postsynaptic to amacrine cells and a few bipolar cell terminals in stratum 1 of the inner plexiform layer and are primarily presynaptic to All amacrine cell bodies and lobular appendages, and to another type of amacrine cell body and amacrine dendrites hypothesized to be the A17 amacrine cell. The Toh+dendrites in stratum 2 are presynaptic to All lobular appendages primarily. Stained ‘axon-like’ processes running in stratum 5 prove to be presynaptic to All amacrine dendrites as they approach the rod bipolar axon terminals and they may also be presynaptic to the rod bipolar terminal itself. The Toh+stained dendrites that have been followed in the outer plexiform layer run along the top of the B-type horizontal cell somata and may have small synapses upon them. The only clear synapses seen in the outer plexiform layer are from the Toh+profiles upon vesicle filled amacrine-like profiles that are in turn presynaptic to bipolar cell dendrites in the outer plexiform layer. We presume the cells postsynaptic to the Toh+dendrites in the outer plexiform layer are interplexiform cells. Finally the Toh+profiles that course along blood vessel walls and in the ganglion cell layer appear to end either against the basal lamina of the blood vessel or at intercellular channels of vesicle-laden Muller cell end-feet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cohen, E. &Sterling, P. (1986) Accumulation of [3H]-glycine by cone bipolar neurons in the cat retina.Journal of Comparative Neurology 250, 1–7.

    PubMed  Google Scholar 

  • Dacey, D. M. (1988) Dopamine-accumulating retinal neurons revealed byin vitro fluorescence display a unique morphology.Science 240, 1196–8.

    PubMed  Google Scholar 

  • Dacey, D. M. (1989) Axon-bearing amacrine cells of the Macaque monkey retina.Journal of Comparative Neurology 284, 275–93.

    PubMed  Google Scholar 

  • Dowling, J. E. &Ehinger, B. (1975) Synaptic organization of the amine-containing interplexiform cells of goldfish and Cebus monkey retina.Science 188, 270–3.

    PubMed  Google Scholar 

  • Ehinger, B. (1966) Distribution of adrenergic nerves in the eye and some related structures in the cat.Acta Physiologica Scandinavica 66, 123–8.

    PubMed  Google Scholar 

  • Ehinger, B. (1983) Functional role of dopamine in the retina.Progress in Retinal Research 2, 213–47.

    Google Scholar 

  • Eldred, W. D., Zucker, C., Karten, H. J. &Yazulla, S. (1983) Comparison of fixation and penetration enhancement techniques for use in ultrastructural immunocyto-chemistry.Journal of Histochemistry and Cytochemistry 31, 285–92.

    PubMed  Google Scholar 

  • Famiglietti, E. V. &Kolb, H. (1975) Abistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina.Brain Research 84, 293–300.

    PubMed  Google Scholar 

  • Favard, C., Simon, A. &Nguyen-Legros, J. (1989) Relationships between dopaminergic processes and blood capillary walls in rat and monkey retinas: an electron microscope immunocytochemical study.Supplement to Investigative Ophthalmology and Visual Science 30, 20.

    Google Scholar 

  • Fisher, S. K., Linberg, K. A. &Kolb, H. (1986) A Golgi study of bipolar and horizontal cells in the human retina.Supplement to Investigative Ophthalmology and Visual Science 27, 203.

    Google Scholar 

  • Frederick, J. M., Rayborn, M. E., Laties, A. M., Lam, D. M. &Hollyfield, J. G. (1982) Dopaminergic neurons in the human retina.Journal of Comparative Neurology 210, 65–79.

    PubMed  Google Scholar 

  • Hokoc, J. N. &Mariani, A. P. (1987) Tyrosine hydroxylase immunoreactivity in the rhesus monkey retina reveals synapses from bipolar cells to dopaminergic amacrine cells.Journal of Neuroscience 7, 2765–93.

    Google Scholar 

  • Hokoc, J. N. &Mariani, A. P. (1988) Synapses from bipolar cells onto dopaminergic amacrine cells in cat and rabbit retina.Brain Research 461, 17–26.

    PubMed  Google Scholar 

  • Holmgren, I. (1982) Synaptic organization of the dopaminergic neurons in the retina of the Cynomologus monkey.Investigative Ophthalmology and Visual Science 22, 8–24.

    PubMed  Google Scholar 

  • Jensen, R. (1989) Mechanism of action of dopamine D1 antagonists on OFF-center ganglion cells in rabbit retina.Supplement to Investigative Ophthalmology and Visual Science 30, 18.

    Google Scholar 

  • Kolb, H. (1979) The inner plexiform layer in the retina of the cat: electron microscopic observations.Journal of Neurocytology 8, 295–329.

    PubMed  Google Scholar 

  • Kolb, H. &Nelson, R. (1983) Rod pathways in the retina of the cat.Vision Research 23, 301–12.

    PubMed  Google Scholar 

  • Kolb, H. &Nelson, R. (1985) Functional neurocircuitry of amacrine cells in the cat retina. InNeurocircuitry of the Retina: a Cajal Memorial (edited byGallego, A. &Gouras, P.) pp. 215–32. New York: Elsevier Press.

    Google Scholar 

  • Kolb, H., Nelson, R. &Mariani, A. (1981) Amacrine cells, bipolar cells and ganglion cells of the cat retina.Vision Research 21, 1081–114.

    PubMed  Google Scholar 

  • Kolb, H. &West, R. W. (1977) Synaptic connections of the interplexiform cell in the retina of the cat.Journal of Neurocytology 6, 155–70.

    PubMed  Google Scholar 

  • Kramer, S. G. (1971) Dopamine: a retinal neurotransmitter. 1. retinal uptake, storage, and light stimulated release of [3H]-dopaminein vivo.Investigative Ophthalmology 10, 438–52.

    PubMed  Google Scholar 

  • Mariani, A. P. (1983) Giant bistratified bipolar cells in the monkey retina.Anatomical Record 206, 215–20.

    Google Scholar 

  • Marshburn, P. B. &Iuvone, P. M. (1981) The role of GABA in the regulation of the dopamine/tyrosine hydroxylase-containing neurons of the rat retina.Brain Research 214, 335–47.

    PubMed  Google Scholar 

  • Massey, S. C. &Redburn, D. A. (1987) Transmitter circuits in the vertebrate retina.Progress in Neurobiology 28, 55–96.

    PubMed  Google Scholar 

  • Mcculloch, J. (1983) Peptides and microregulation of blood flow in the brain.Nature 304, 120.

    PubMed  Google Scholar 

  • Mcguire, B. A., Stevens, J. K. &Sterling, P. (1984) Microcircuitry of bipolar cells in cat retina.Journal of Neuroscience 4, 2920–38.

    Google Scholar 

  • Nakamura, Y., Mcguire, B. A. &Sterling, P. (1980) Interplexiform cell in the cat retina: identification by uptake of [3H] γ aminobutyric acid and serial sections.Proceedings of the National Academy of Sciences USA 77, 255–68.

    Google Scholar 

  • Nelson, R. &Kolb, H. (1985) A17: a broad-field amacrine cell of the rod system in the retina of the cat.Journal of Neurophysiology 54, 592–614.

    PubMed  Google Scholar 

  • Nguyen-Legros, J. (1988) Morphology and distribution of catecholamine-neurons in mammalian retina.Progress in Retinal Research 7, 113–47.

    Google Scholar 

  • O'connor, P. M., Zucker, C. L. &Dowling, J. E. (1987) Regulation of dopamine release from interplexiform cell processes in the outer plexiform layer of the carp retina.Journal of Neurochemistry 49, 916–20.

    PubMed  Google Scholar 

  • Oyster, C. W., Takahashi, E. S., Cillufo, M. &Brecha, N. (1985) Morphology and distribution of tyrosine hydroxylase-like immunoreactive neurons in the cat retina.Proceedings of the National Academy of Sciences USA 82, 6335–9.

    Google Scholar 

  • Pourcho, R. G. (1982) Dopaminergic amacrine cells in the cat retina.Brain Research 252, 101–9.

    PubMed  Google Scholar 

  • Pourcho, R. G. &Goebel, D. J. (1983) Neuronal subpopulations in cat retina which accumulate the GABA against [3H]-muscimol: a combined Golgi and autoradiographic study.Journal of Comparative Neurology 219, 25–35.

    PubMed  Google Scholar 

  • Törk, I. &Stone, J. (1979) Morphology of catecholamine-containing amacrine cells in the cat's retina, as seen in retinal whole mounts.Brain Research 169, 261–73.

    PubMed  Google Scholar 

  • Vaney, D. I. (1985) The morphology and topographic distribution of All amacrine cells in the cat retina.Proceedings of the Royal Society, London [Series B] 224, 475–88.

    Google Scholar 

  • Voight, T. &Wässle, H. (1987) Dopaminergic innervation of All amacrine cells in mammalian retina.Journal of Neuroscience 7, 4115–28.

    PubMed  Google Scholar 

  • Wahl, M. (1985) Local chemical, neural and humoral control of cerebral vascular vessels.Journal of Cardiovascular Pharmacology 7, Suppl. 3, S36–48.

    Google Scholar 

  • Wässle, H. &Chun, M. H. (1988) Dopaminergic and indoleamine-accumulating amacrine cells express GABA-like immunoreactivity in the cat retina.Journal of Neuroscience 8, 3383–94.

    PubMed  Google Scholar 

  • Wässle, H., Voight, T. &Patel, B. (1987) Morphological and immunocytochemical identification of indoleamine-accumulating neurons in the cat retina.Journal of Neuroscience 7, 1574–85.

    PubMed  Google Scholar 

  • Yazulla, S. &Zucker, C. L. (1988) Synaptic organization of dopaminergic interplexiform cells in the goldfish retina.Visual Neuroscience 1, 13–29.

    PubMed  Google Scholar 

  • Ye, X., Laties, A. M. &Stone, R. A. (1989) Peptidergic innervation of the retinal vasculature and optic nerve head.Supplement to Investigative Ophthalmology and Visual Science 30, 20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, H., Cuenca, N., Wang, H.H. et al. The synaptic organization of the dopaminergic amacrine cell in the cat retina. J Neurocytol 19, 343–366 (1990). https://doi.org/10.1007/BF01188404

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188404

Keywords

Navigation