Skip to main content
Log in

Ontogeny of the calcium binding protein parvalbumin in the rat nervous system

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

In the adult rat brain, the calcium-binding protein parvalbumin is preferentially associated with spontaneously fast-firing, metabolically active neurons and coexists with gamma-amino-butyric acid (GABA) in cortical inhibitory interneurons. Whether this is so in developing neurons has not been explored. To this end, we have used parvalbumin immunohistochemistry to study expression of this protein in the rat nervous system during pre- and postnatal life. Our results indicate that parvalbumin first appears at embryonic day 13 in sensory system of the spinal cord, in the vestibular (VIII), the trigeminal (V) and the visuomotor (III, IV VI) systems, and develops rapidly during the following days. In these locations the expression of parvalbumin coincides with the beginning of physiological activity in nerve cells. In the gamma-aminobutyric acid (GABA)-containing interneurons of the cerebral cortex and the hippocampus, as well as in the Purkinje cells of the cerebellum, parvalbumin only appears postnatally. It lags behind the development of GABA-immunoreactivity by 1 to 2 weeks. The beginning of its expression, in the cerebellum at least, coincides with the arrival of excitatory synaptic input and the onset of spontaneous activity. Thus, during the development of the nervous system, the expression of parvalbumin is subordinate to the establishment of physiological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3:

oculomotor nucleus

4:

trochlear nucleus

4n:

trochlear nerve

6:

abducens nucleus

12:

hypoglossal nucleus

3n:

oculomotor nerve

4V:

4th ventricle

5g:

trigeminal ganglion

5n:

trigeminal nerve

5mx:

trigeminal nerve, maxillary branch

8c1:

cochlear ganglion

8g:

vestibular ganglion

8n:

vestibular nerve

10n:

vagal nerve

Amb:

ambiguus nucleus

CaBP:

calcium-binding protein

Ce:

cerebellum

ChP:

choroid plexus

cl:

cochlea

CPu:

caudate putamen

Cu:

cuneate nucleus

Cx:

cerebral cortex

df:

dorsal funiculus spinal cord

dr:

dorsal root spinal nerve

E15:

embryonic day 15 of gestation

ECN:

external cuneate nucleus

Fr:

formatio reticularis

GABA:

gamma-amino-butyric acid

GAD:

glutamate decarboxylase

gl:

granular layer cerebellum

Gr:

gracile nucleus

Hip:

hippocampus

H:

heart

inc:

inferior colliculus

IOK:

inferior olive, kap cooy medial nucleus

Li:

liver

LMol:

lacunosum moleculare layer hippocampus

Lu:

lung

LV:

lateral ventricle

LVe(v):

lateral vestibular nucleus (ventral)

LVe(d):

lateral vestibular nucleus (dorsal)

me5:

mesencephalic trigeminal tract

Me5:

mesencephalic trigeminal nucleus

Mes:

mesencephalon

ml:

molecular layer cerebellum

MVe:

medial vestibular nucleus

Or:

oriens layer hippocampus

P 2:

postnatal day 2

Pu:

Purkinje-cell layer, cerebellum

Py:

pyramidal cell layer, hippocampus

R:

red nucleus

Rhom:

rhombencephalon

Rt:

reticular thalamic nucleus

sk:

skin

sn:

substantia nigra

spgl:

spinal ganglion

sp5:

spinal trigeminal tract

SpVe:

spinal vestibular nucleus

Sp5I:

spinal trigeminal nucleus, interpolar

suc:

superior colliculus

SuVe:

superior vestibular nucleus

TBS:

tris-buffered saline

tch:

tactile hair sinus

ve:

vestibular epithelium

vb:

vertebral body

vh:

ventral horn spinal cord

VL:

ventrolateral thalamic nucleus

VP:

ventral pallidum

vr:

ventral root spinal nerve

References

  • Altman J (1972) Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and the molecular layer. J Comp Neurol 145:399–464

    Google Scholar 

  • Altman J, Bayer SA (1979) Development of the diencephalon of the rat. V. Thymidine-radiographic observations on internuclear and intranuclear gradients in the thalamus. J Comp Neurol 188:473–500

    Google Scholar 

  • Altman J, Bayer SA (1980a) Development of the brain stem in the rat. II. Thymidine-radiographic study of the time of origin of neurons of the upper medulla, excluding the vestibular and auditory nuclei. J Comp Neurol 194:37–56

    Google Scholar 

  • Altman J, Bayer SA (1980b) Development of the brain stem of the rat. 111. Thymidine-radiographic study of the time of origin of neurons of the vestibular and auditory nuclei of the upper medulla. J Comp Neurol 194:877–904

    Google Scholar 

  • Altman J, Bayer SA (1981a) Development of the brain stem in the rat. V. Thymidine-radiographic study of the time of origin of neurons in the midbrain tegmentum. J Comp Neurol 198:677–716

    Google Scholar 

  • Altman J, Bayer SA (1981b) Time of origin of neurons of the rat superior colliculus in relation to other components of the visual and visuomotor pathways. Exp Brain Res 42:424–434

    Google Scholar 

  • Altman J, Bayer SA (1982) Development of the cranial nerve ganglions and related nuclei in the rat. Adv Anat Embryol Cell Biol 74:1–90

    Google Scholar 

  • Altman J, Bayer SA (1985) Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration and settling of Purkinje cells. J Comp Neurol 231:42–65

    Google Scholar 

  • Amaral DG, Kurz J (1985) The time of origin of cells demonstrating glutamic acid decarboxylase-like immunoreactivity in the hippocampal formation of the rat. Neurosci Lett 59:33–39

    Google Scholar 

  • van Bartheld SC, Rubel EW (1989) Transient GABA-immunoreactivity in cranial nerves of the chick embryo. J Comp Neurol 286:456–471

    Google Scholar 

  • Bayer SA (1980a) Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 190:87–114

    Google Scholar 

  • Bayer SA (1980b) Development of the hippocampal regions in the rat. 11. Morphogenesis during embryonic and early postnatal life. J Comp Neurol 190:115–134

    Google Scholar 

  • Berchtold MW, Celio MR, Heizmann CW (1984) Parvalbumin in non-muscle tissues of the rat. J Biol Chem 259:5189–5196

    Google Scholar 

  • Berry M, Rogers W (1965) The migration of neuroblasts in the developing cerebral cortex. J Anat 99:691–709

    Google Scholar 

  • Bieger D, Hopkins DA (1987) Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 262:546–562

    Google Scholar 

  • Bourne JA (1983) Handbook of immunoperoxidase staining methods. DAKO corporation. Santa Barbara, Calif. 93103

    Google Scholar 

  • Braun K, Scheich H, Schachner M, Heizmann CW (1985) Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch. II. Visual system. Cell Tissue Res 240:117–127

    Google Scholar 

  • Celio MR (1984) Parvalbumin as a marker of fast firing neurons. Neurosci Lett [Suppl 18]:322

    Google Scholar 

  • Celio MR (1987) Parvalbumin in most gamma-amino-butyric acid-containing neurons of the rat cerebral cortex. Science 231:995–997

    Google Scholar 

  • Celio MR (1989) Calcium-binding proteins in the brain. Arch Ital Anat Embriol 94:227–236

    Google Scholar 

  • Celio MR (1970) Calcium-binding proteins in the rat nervous system. Neuroscience 35:375–475

    Google Scholar 

  • Celio MR, Heizmann CW (1981) Calcium-binding protein parvalbumin as a neuronal marker. Nature 293:300–302

    Google Scholar 

  • Celio MR, Baier W, Schäfer L, de Viragh PA, Gerday CH (1988) Monoclonal antibodies directed against the calcium-binding protein parvalbumin. Cell Calcium 9:81–86

    Google Scholar 

  • Cheung EJ (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27

    Google Scholar 

  • Chromwall BM, Wolff JR (1980) Prenatal and postnatal development of GABA-accumulating cells in the occipital cortex of the rat. J Comp Neurol 190:187–208

    Google Scholar 

  • Chung K, Coggeshall RE (1987) Postnatal development of the rat dorsal funiculus. J Neurosci 7:972–977

    Google Scholar 

  • Clarke PGH (1989) Development cell death: morphological diversity and multiple mechanisms. Anat Embryol 263:1–19

    Google Scholar 

  • Dennis MJ, Ziskind-Conhaim L, Harris AJ (1981) Development of neuromuscular junctions in rat embryos. Dev Biol 81:266–279

    Google Scholar 

  • Deuticke HJ (1934) Über die Sedimentationskonstante von Muskelproteinen. Hoppe-Seyler's Z Physiol Chem 224:216–238

    Google Scholar 

  • van Eden CG, Mrzijak L, Voorn P, Uyilings HBM (1989) Prenatal development of GABA-ergic neurons in the neocortex of the rat. J Comp Neurol 289:213–227

    Google Scholar 

  • Enderlin S, Norman AW, Celio MR (1987) Ontogeny of the calcium-binding protein calbindin D-28k in the rat nervous system. Anat Embryol 177:15–28

    Google Scholar 

  • Endo T, Ashi SK, Onaya T (1985) Parvalbumin in rat cerebrum, cerebellum and retina during postnatal development. Neurosci Lett 60:279–282

    Google Scholar 

  • Fitzgerald M (1985) The post-natal development of cutaneous afferent fibre input and receptive field organisation in the rat dorsal horn. J Physiol 364:1–18

    Google Scholar 

  • Fitzgerald M (1997) Cutaneous primary afferent properties in the hindlimb of the neonatal rat. J Physiol 383:79–92

    Google Scholar 

  • Foster GA, Schultzberg M, Goldstein M, Hökfelt T (1985) Ontogeny of phenylthanolamine N-methyltransferase- and tyrosine hydroxylase-like immunoreactivity in presumptive adrenaline neurones of the fetal rat central nervous system. J Comp Neurol 236:348–381

    Google Scholar 

  • Heizmann CW (1984) Parvalbumin, an intracellular calcium-binding protein: distribution, properties and possible roles in mammalian cells. Experientia 40:910–921

    Google Scholar 

  • Heizmann CW, Berchthold MW (1987) Expression of Parvalbumin and other Ca2+-binding proteins in normal and tumor cells: a topical review. Cell Calcium 8:1–41

    Google Scholar 

  • Heizmann CW, Celio MR (1987) Immunolocalization of parvalbumin. Methods Enzymol 139:552–570

    Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of Avidin-Biotin-Peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    Google Scholar 

  • Kägi U, Berchthold MW, Heizmann CW (1987) Ca2+-binding parvalbumin in rat testis. Characterization, localization, and expression during development. J Biol Chem 262:7314–7320

    Google Scholar 

  • Kawaguchi Y, Katsumaru H, Kosaka T, Heizmann CW (1987) Fast spiking cells in the rat hippocampus (CAI region) contain the calcium-binding protein parvalbumin. Brain Res 416:369–374

    Google Scholar 

  • Kelly J, Whelan CA, Wei DG, Feighery C (1987) Removal of endogenous peroxidase activity from cryostat sections for immunoperoxidase visualization of monoclonal antibodies. J Immunol Methods 96:127–132

    Google Scholar 

  • Kerns JM (1980) Postnatal differentiation of the rat trochlear nerve. J Comp Neurol 189:291–306

    Google Scholar 

  • König N, Marty R (1981) Early neurogenesis and synaptogenesis in cerebral cortex. Bibl Anat 19:152–160

    Google Scholar 

  • Kosaka T, Katsumaru H, Hama K, Wu J-Y, Heizmann CW (1987) GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and denate gyrus. Brain Res 419:119–130

    Google Scholar 

  • Kretsinger RH (1981) Mechanisms of selective signalling by calcium. Neurosci Res Progr Bull 19(8). MIT Press, Boston

    Google Scholar 

  • Lance-Jones C (1982) Motoneuron cell death in the developing lumbar spinal cord of the mouse. Dev Brain Res 4:473–479

    Google Scholar 

  • Landis DMD (1985) Promise and pitfalls in immunocytochemistry. TINS 8:312–317

    Google Scholar 

  • Lauder JM, Han VKM, Henderson P, Verdoom T, Towle AC (1986) Prenatal ontogeny of the GABAergic system in the rat brain: an immunocytochemical study. Neuroscience 19:465–493

    Google Scholar 

  • Lawson SN, Caddy KWT, Biscoe TJ (1974) Development of rat dorsal root ganglion neurones. Cell Tissue Res 153:399–413

    Google Scholar 

  • Lager DG (1983) Comparative localization of acetylcholinesterase and pseudocholinesterase during morphogenesis of the chicken brain. Proc Natl Acad Sci USA 80:6413–6417

    Google Scholar 

  • Leong SF, Clark JB (1984) Regional enzyme development in rat brain. Biochem J 218:139–145

    Google Scholar 

  • Lübbers K, Wolff JR, Frotscher M (1985) Neurogenesis of GABAergic neurons in the rat dentate gyrus: a combined autoradiographic and immunocytochemical study. Neurosci Lett 62:317–322

    Google Scholar 

  • Matthews MA, Duncan D (1971) A quantitative study of morphological changes accompanying the initiation and progress of myelin production in the dorsal funiculus of the rat spinal cord. J Comp Neurol 142:1–22

    Google Scholar 

  • McLaughlin BJ, Wood JG, Saito K, Roberts E, Wu J-Y (1975) The fine structural localization of glutamate decarboxylase in developing axonal processes and presynaptic terminals of rodent cerebellum. Brain Res 95:355–371

    Google Scholar 

  • Means AR, Tash JS, Chafouleas JG (1982) Implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol Rev 62:1–39

    Google Scholar 

  • Michelson HB, Lothman EW (1989) An in-vivo electrophysiological study of the ontogeny of excitatory and inhibitors processes in the rat hippocampus. Dev Brain Res 47:113–122

    Google Scholar 

  • Mjaatvedt AE, Wong-Riley MTT (1988) Relationship between synaptogenesis and cytochrome oxidase activity in Purkinje cells of the developing rat cerebellum. J Comp Neurol 277:155–182

    Google Scholar 

  • Morris RJ, Beech JN, Heizmann CW (1988) Two distinct phases and mechanisms of axonal growth shown by primary vestibular fibres in the brain demonstrated by parvalbumin immunohistochemistry. Neuroscience 27:571–596

    Google Scholar 

  • Mueller AL, Taube JS, Schwartzkroin PA (1984) Development of hyperpolarizing responses to GABA in rabbit hippocampus in vitro. J Neurosci 4:860–867

    Google Scholar 

  • Nag AC, Cheng M (1982) Differentiation of fibre types in an extraocular muscle of the rat. J Embryol Exp Morphol 71:171–191

    Google Scholar 

  • Nitsch C, Scotti AL, Sommacal A, Kalt G (1989) GABA-ergic hippocampal neurons resistant to ischemia-induced delayed neuronal death contain the calcium-binding protein parvalbumin. Neurosci Lett 105:263–268

    Google Scholar 

  • Nitsch R, Bergmann I, Küppers K, Mueller G, Frotscher M (1990) Late appearance of parvalbumin-immunoreactivity in the development of GABA-ergic neurons in the rat hippocampus. Neurosci Lett 118:147–150

    Google Scholar 

  • Nornes HO, Das GD (1974) Temporal pattern of neurogenesis in spinal cord of the rat. I. An autoradiographic study — time and sites of origin and migration and settling patterns of neuroblasts. Brain Res 73:121–138

    Google Scholar 

  • Palacios JM, Niehoff DL, Kuhar MJ (1979) Ontogeny of GABA and benzodiazepine receptors: effects of Triton-x100, bromide and muscimol. Brain Res 179:390–395

    Google Scholar 

  • Purpura DP, Shofer RJ, Scorff T (1965) Properties of synaptic activities and spike potentials of neurons in immature neocortex. J Neurophysiol 28:925–942

    Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–84

    Google Scholar 

  • Rogers J, Khan M, Ellis J (1990) Calretinin and other CaBP's in the nervous system. In: Pochet R, Lawson E, Heizmann CW (eds) Calcium binding proteins in normal and transformed cells. Plenum Press, New York

    Google Scholar 

  • Schanne FAX, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206:700–702

    Google Scholar 

  • Schwann JW, Brady RJ, Martin DL (1989) Postnatal development of GABA-mediated synaptic inhibition in rat hippocampus. Neuroscience 28:551–561

    Google Scholar 

  • Séquier JM, Hunziker W, Andressen C, Celio MR (1990) Calbindin D-28k: protein and mRNA localization in the rat brain. Eur J Neurosci 2:1118–1126

    Google Scholar 

  • Smith CL (1983) The development and postnatal organisation of primary afferent projections to the rat thoracic spinal cord. J Comp Neurol 220:29–43

    Google Scholar 

  • Sohal GS, Weidman TA (1978) Development of the trochlear nerve: loss of axons during normal ontogeny. Brain Res 142:455–465

    Google Scholar 

  • Soriano E, Cobas A, Fairén A (1986) Asynchronism in the neurogenesis of GABAergic and non-GABAergic neurons in the mouse hippocampus. Dev Brain Res 30:88–92

    Google Scholar 

  • Spencer RF, Porter JD (1988) Structural organization of the extraocular muscles. In: Büttner-Ennever JA (ed) Neuroanatomy of the oculomotor system. Elsevier, Amsterdam

    Google Scholar 

  • Stichel CC, Singer W, Heizmann CW (1988) Light and electron microscopic immunocytochemical localization of parvalbumin in the dorsal lateral geniculate nucleus of the cat: evidence for coexistence with GABA. J Comp Neurol 268:29–37

    Google Scholar 

  • Vaughn JE, Grieshaber JA (1973) A morphological investigation of an early reflex pathway in developing rat spinal cord. J Comp Neurol 148:177–210

    Google Scholar 

  • Wolff JR, Balcar VJ, Zetzsche T, Böttcher H, Schmechel DE, Chromwall BM (1984a) Development of GABAergic system in rat visual cortex. In: Lauder JM, Nelson PG (eds) Gene expression and cell-cell interaction in the developing nervous system. Plenum Press, New York, pp 215–239

    Google Scholar 

  • Wolff JR, Böttcher H, Zetzsche T, Oertel WH, Chromwall BM (1984b) Development of GABAergic neurons in rat visual cortex as identified by glutamate decarboxylase-like immunoreactivity. Neurosci Lett 47:207–212

    Google Scholar 

  • Zelená J (1957) The morphogenetic influence of innervation on the ontogenetic development of muscle spindle. J Embryol Exp Morphol 5:283–292

    Google Scholar 

  • Zhang JH, Morita Y, Hironaka T, Emson PC, Tohyama M (1990) Ontological study of Calbindin D-28k-like and Parvalbuminlike immunoreactivities in rat spinal cord and dorsal root ganglia. J Comp Neurol 302:715–728

    Google Scholar 

  • Ziskind-Conhaim L: (1988) Physiological and morphological changes in developing peripheral nerves of rat embryos. Develop. Brain Res. 42:15–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solbach, S., Celio, M.R. Ontogeny of the calcium binding protein parvalbumin in the rat nervous system. Anat Embryol 184, 103–124 (1991). https://doi.org/10.1007/BF00942742

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00942742

Key words

Navigation