Skip to main content
Log in

Loss of dendritic spines in aging cerebral cortex

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Previous work has shown that the dendritic spines of pyramidal neurons of the cerebral cortex are sensitive to a wide variety of environmental and surgical manipulations. The present study shows that the normal aging process also affects these spines. The spines were studied with the light microscope in Golgi preparations from rats ranging in age from 3 to 29.5 months. Visible spines were counted on either 25 or 50 μ segments of the basal dendrites, apical dendrites, oblique branches, and terminal tufts of layer V pyramidal cells in area 17. A progressive loss of spines occurred at each of these loci. The smallest observed spine loss (24%) occurred on the dendrites of the terminal tuft, and the largest (40%) on the oblique branches. Age-related spine loss appears to affect all animals, and for animals of any one age the overall loss is similar. However, the cell-to-cell variability within an individual animal is pronounced, some cells with high spine densities being present at every age examined. As a general rule, there is a positive relationship between visible spine density along the apical dendrite as it traverses layer IV and the thickness of the dendrite. With advancing age, the relatively thick dendrites decrease in number so that the thinner dendrites make up an increasingly larger proportion of the total apical dendrite population. Questions that remain for the future include the genesis of the spine loss, its relation to other aging changes, and its functional significance for the neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ben Hamida, C., Ruiz de Pereda, G., Hirsch, J. C.: Les épines dendritiques du cortex de gyrus isolé de chat. Brain Res. 21, 313–325 (1970)

    Google Scholar 

  • Brody, H.: Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J. comp. Neurol. 102, 511–556 (1955)

    Google Scholar 

  • Cant, N. B., Rutledge, L. T.: Alterations in the structure of striate cortical neurons after eye enucleation in adult cats. Paper presented to The Cajal Club. American Association of Anatomists meeting (1973)

  • Chan-Palay, V., Palay, S. L., Billings-Gagliardi, S. M.: Meynert cells in the primate visual cortex. J. Neurocytol. 3, 631–658 (1974)

    Google Scholar 

  • Chow, K. L., Leiman, A. L.: The structural and functional organization of the neocortex. Neurosciences Res. Prog. Bull. 8, 2 (1970)

    Google Scholar 

  • Coleman, P. D., Riesen, A. H.: Environmental effects on cortical dendritic fields. I. Rearing in the dark. J. Anat. (Lond.) 102, 363–374 (1968)

    Google Scholar 

  • Colonnier, M.: Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 9, 268–287 (1968)

    Google Scholar 

  • Colonnier, M., Rossignol, S.: On the heterogeneity of the cerebral cortex. In: Basic Mechanisms of the Epilepsies, (eds. Jasper, H., Pope, A., and Ward, A.). Boston: Little, Brown 1969

    Google Scholar 

  • Corso, J. F.: Sensory processes and age effects in normal adults. J. Geront. 26, 90–105 (1971)

    Google Scholar 

  • Cowan, W. M.: Anterograde and retrograde trasneuronal degeneration in the central and peripheral nervous system. In: Contemporary Research Methods in Neuroanatomy (eds. Nauta, W. J. H. and Ebbesson, S. O. E.). Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  • Demoor, J.: Le mechanisme et la signification de l'état moniliforme des neurones. Ann. Soc. roy. Sci. med. nat. Brux. 7, 205–250 (1898)

    Google Scholar 

  • Feldman, M. L., Peters, A.: A study of barrels and pyramidal dendritic clusters in the cerebral cortex. Brain Res. 77, 55–76 (1974)

    Google Scholar 

  • Feldman, M. L., Peters, A.: Morphological changes in the aging brain. In: Survery Report on the Aging Nervous System (ed. Maletta, G. J.). Washington: U. S. Government Printing Office. DHEW Publication No. (NIH) 74–296 1974

    Google Scholar 

  • Fifková E.: Changes in the visual cortex of rats after unilateral deprivation. Nature (Lond.) 220, 379–381 (1968)

    Google Scholar 

  • Fifková, E.: The effect of unilateral deprivation on visual centers in rats. J. comp. Neurol. 140, 431–438 (1970)

    Google Scholar 

  • Gaitz, C. M.: Aging and the Brain. New York: Plenum Press, 1972

    Google Scholar 

  • Globus, A.: Neuronal ontogeny: its use in tracing connectivity. In: Brain Development and Behavior (eds. Sterman, M. B., McGinty, D. J., and Adinolfi, A. M.), New York: Academic Press 1971

    Google Scholar 

  • Globus, A., Rosenzweig, M. R., Bennett, E. L., Diamond, M. C.: Effects of differential experience on dendritic spine counts in rat cerebral cortex. J. comp. Physiol. Psychol, 82, 175–181 (1973)

    Google Scholar 

  • Globus, A., Scheibel, A. B.: Loss of dendrite spines as an index of presynaptic terminal paterns. Nature (Lond.) 212, 463–465 (1966)

    Google Scholar 

  • Globus, A., Scheibel, A. B.: Synaptic loci on parietal cortical neurons: terminations of corpus callosum fibers. Science 156, 1127–1129 (1967a)

    Google Scholar 

  • Globus, A., Scheibel, A. B.: Synaptic loci on visual cortical neurons of the rabbit: the specific afferent radiation. Exp. Neurol. 18, 116–131 (1967b)

    Google Scholar 

  • Globus, A., Scheibel, A. B.: Pattern and field in cortical structure: the rabbit. J. comp. Neurol. 131, 155–172 (1967c)

    Google Scholar 

  • Globus, A., Scheibel, A. B.: The effect of visual deprivation on cortical neurons: A Golgi study. Exp. Neurol. 19, 331–345 (1967d)

    Google Scholar 

  • Greenough, W. T., Volkmar, F. R.: Pattern of dendritic branching in occipital cortex of rats reared in complex environments. Exp. Neurol. 40, 491–504 (1973)

    Google Scholar 

  • Gruner, J. E., Hirsch, J. C., Sotelo, C.: Ultrastructural features of the isolated suprasylvian gyrus in the cat. J. comp. Neurol. 154, 1–28 (1974)

    Google Scholar 

  • Jones, E. G., Powell, T. P. S.: Morphological variations in the dendritic spines of the neocortex. J. Cell Sci. 5, 509–529 (1969)

    Google Scholar 

  • Jones, W. H., Thomas, D. B.: Changes in the dendritic organization of neurons in the cerebral cortex following deafferentation. J. Anat. (Lond.) 96, 375–381 (1962)

    Google Scholar 

  • Kemper, T. L., Caveness, W. F., Yakovlev, P. I.: The neuronographic and metric study of the dendritic arbours of neurons in the motor cortex of Macaca mulatta at birth and 24 months of age. Brain 96, 765–782 (1973)

    Google Scholar 

  • Krieg, W. J. S.: Connections of the cerebral cortex. I. Albino rat. A. Topography of the cortical areas. J. comp. Neurol. 84, 221–275 (1946a)

    Google Scholar 

  • Krieg, W. J. S.: Connections of the cerebral cortex. I. Albino rat. B. Structure of the cortical areas. J. comp. Neurol. 84, 277–324 (1946b)

    Google Scholar 

  • Le Vay, S.: Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations. J. comp. Neurol. 150, 53–86 (1973)

    Google Scholar 

  • Liu, C. N., Liu, C. Y.: Role of afferents in maintenance of dendritic morphology. Anat. Rec. 169, 369 (1971)

    Google Scholar 

  • Lorente de Nó, R.: Cerebral cortex: architecture, intracortical connections, motor projections. In: Physiology of the Nervous System (ed. Fulton, J. F.), New York: Oxford University Press 1949

    Google Scholar 

  • Marin-Padilla, M.: Number and distribution of the apical dendritic spines of the layer V pyramidal cells in man. J. comp. Neurol. 131, 475–490 (1967)

    Google Scholar 

  • Marin-Padilla, M.: Structural abnormalities of the cerebral cortex in human chromosomal aberrations: A Golgi study. Brain Res. 44, 625–629 (1972)

    Google Scholar 

  • Marin-Padilla, M.: Structural organization of the cerebral cortex (motor area) in human chromosomal aberrations. A Golgi study. Brain Res. 66, 375–391 (1974)

    Google Scholar 

  • Marin-Padilla, M., Stibitz, G. R.: Distribution of the apical dendritic spines of the layer V pyramidal cell of the hamster neocortex. Brain Res. 11, 580–592 (1968)

    Google Scholar 

  • Marin-Padilla, M., Stibitz, G. R., Almy, C. P., Brown, H. N.: Spine distribution of the layer V pyramidal cell in man: a cortical model. Brain Res. 12, 493–496 (1969)

    Google Scholar 

  • Matthews, M. R., Powell, T. P. S.: Some observations on transneuronal cell degeneration in the olfactory bulb of the rabbit. J. Anat. (Lond.) 96, 89–102 (1962)

    Google Scholar 

  • Montero, V. M., Rojas, A., Torrealba, F.: Retinotopic organization of striate and poststriate visual cortex in the albino rat. Brain Res. 53, 197–201 (1973)

    Google Scholar 

  • Monti, A.: Sur les altérations du système nerveux dans l'inanition. Arch. ital. Biol. 24, 347–360 (1895)

    Google Scholar 

  • Parnavelas, J. G., Globus, A., Kaups, P.: Continuous illumination from birth affects spine density of neurons in the visual cortex of the rat. Exp. Neurol. 40, 742–747 (1973)

    Google Scholar 

  • Penman, J., Smith, M. C.: Degeneration of the primary and secondary sensory neurons after trigeminal injection. J. Neurol. Psychiat. 13, 36–46 (1950)

    Google Scholar 

  • Peters, A., Kaiserman-Abramof, I.: The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Amer. J. Anat. 127, 321–356 (1970)

    Google Scholar 

  • Peters, A., Walsh, T. M.: A study of the organization of apical dendrites in the somatic sensory cortex of the rat. J. comp. Neurol. 144, 253–268 (1972)

    Google Scholar 

  • Purpura, D. P.: Dendritic spine “dysgenesis” and mental retardation. Science 186, 1126–1128 (1974)

    Google Scholar 

  • Querton, L.: Le sommeil hibernal et les modifications des neurones cerebraux. Ann. Soc. roy. Sci. med. nat. Brux. 7, 147–204 (1898)

    Google Scholar 

  • Ramón y Cajal, S.: Histologie du Système Nerveux de l'Homme et des Vertébrés, Tome II. Paris: Maloine 1911

    Google Scholar 

  • Ries, W.: Problems associated with biological age. Exp. Geront. 9, 145–149 (1974)

    Google Scholar 

  • Ruiz-Marcos, A., Valverde, F.: Dynamic architecture of the visual cortex. Brain Res. 19, 25–39 (1970)

    Google Scholar 

  • Rutledge, L. T., Duncan, J., Cant, N.: Long-term status of pyramidal cell axon collaterals and apical dendritic spines in denervated cortex. Brain Res. 41, 249–262 (1972)

    Google Scholar 

  • Schadé, J. P., Caveness, W. F.: Alteration in dendritic organization. Brain Res. 7, 59–86 (1968)

    Google Scholar 

  • Schapiro, S., Vukovich, K. R.: Early experience effects upon cortical dendrites: A proposed model for development. Science 167, 292–294 (1970)

    Google Scholar 

  • Scheibel, M. E., Scheibel, A. B.: On the nature of dentritic spines—report of a workshop. Communications in Behav. Biol. Part A 1, 231–265 (1968)

    Google Scholar 

  • Shkol'nik-Yarros, E. G.: Neurons and Interneuronal Connections of the Central Visual System. New York:Plenum 1971

    Google Scholar 

  • Sholl, D. A.: The Organization of the Cerebral Cortex. New York: Wiley 1956

    Google Scholar 

  • Soukhanoff, S.: Contribution à l'étude des modifications que subissent les prolongements dendritiques des cellules nerveuses: Sous l'influence des narcotiques. La Cellule 14, 50–395 (1898a)

    Google Scholar 

  • Soukhanoff, S.: L'anatomie pathologique de la cellule nerveuse, en rapport avec l'atrophie variqueuse des dendrites de l'écorce cérébral. La Cellule 14, 398–417 (1898b)

    Google Scholar 

  • Valverde, F.: Studies on the Piriform Lobe, Cambridge: Harvard University Press 1965

    Google Scholar 

  • Valverde, F.: Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp. Brain Res. 3, 337–352 (1967)

    Google Scholar 

  • Valverde, F.: Structural changes in the area striata of the mouse after enucleation. Exp. Brain Res. 5, 274–292 (1968)

    Google Scholar 

  • Valverde, F.: The Golgi method. A tool for comparative structural analysis. In: Contemporary Research Methods in Neuroanatomy, (eds. Nauta, W. J. H. and Ebbesson, S. O. E.), Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  • Valverde, F.: Rate and extent of recovery from dark rearing in the visual cortex of the mouse. Brain Res. 33, 1–11 (1971a)

    Google Scholar 

  • Valverde, F.: Short axon neuronal subsystems in the visual cortex of the monkey. Int. J. Neurosci. 1, 181–197 (1971b)

    Google Scholar 

  • Valverde, F., Estrella Estéban, M.: Peristriate cortex of mouse: location and the effects of enucleation on the number of dendritic spines. Brain Res. 9, 145–148 (1968)

    Google Scholar 

  • Valverde, F., Ruiz-Marcos, A.: Dendritic spines in the visual cortex of the mouse. Introduction to a mathematical model. Exp. Brain Res. 8, 269–283 (1969)

    Google Scholar 

  • Volkmar, F. R., Greenough, W. T.: Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science 176, 1445–1447 (1972)

    Google Scholar 

  • West, C. D., Harrison, J. M.: Transneuronal cell atrophy in the congenitally deaf white cat. J. comp. Neurol. 151, 377–398 (1973)

    Google Scholar 

  • Westrum, L. E., White, L. E., Ward, A. A.: Morphology of the experimental epileptic focus. J. Neurosurg. 21, 1033–1046 (1964)

    Google Scholar 

  • Wright, E. A.: Brain structure and aging. New York: MSS Information Corporation 1974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by United States Public Health Service Program Project Grant HDO-5796-03 and Research Grant NB-07016

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, M.L., Dowd, C. Loss of dendritic spines in aging cerebral cortex. Anat. Embryol. 148, 279–301 (1975). https://doi.org/10.1007/BF00319848

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319848

Key words

Navigation