Skip to main content
Log in

Model emulates human smooth pursuit system producing zero-latency target tracking

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Humans can overcome the 150 ms time delay of the smooth pursuit eye movement system and track smoothly moving visual targets with zero-latency. Our target-selective adaptive control model can also overcome an inherent time delay and produce zero-latency tracking. No other model or man-made system can do this. Our model is physically realizable and physiologically realistic. The technique used in our model should be useful for analyzing other time-delay systems, such as man-machine systems and robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bahill, A.T.: Bioengineering: biomedical, medical and clinical engineering. Englewood Cliffs, NJ: Prentice-Hall Inc. 1981

    Google Scholar 

  • Bahill, A.T., Brockenbrough, A.E., Troost, B.T.: Variability and development of a normative data base for saccadic eye movements. Invest. Ophthalmol. Vis. Sci.21, 116–125 (1981)

    Google Scholar 

  • Bahill, A.T., Clark, M.R., Stark, L.: Dynamic overshoot in saccadic eye movements is caused by neurological control signal reversals. Exp. Neurol.48, 107–122 (1975)

    Google Scholar 

  • Bahill, A.T., Latimer, J.R., Troost, B.T.: Linear homeomorphic model for human movement. IEEE Trans. Biomed. Engr. BME-27, 631–639 (1980)

    Google Scholar 

  • Bahill, A.T., McDonald, J.D.: Smooth pursuit eye movements in response to predictable target motions. Vision Res. (1983) (in press)

  • Becker, W., Jurgens, R.: An analysis of the saccadic system by means of double step stimuli. Vision Res.19, 967–983 (1979)

    Google Scholar 

  • Dallos, P.J., Jones, R.W.: Learning behavior of the eye fixation control system. IEEE Trans. Autom. Control. AC-8, 218–227 (1963)

    Google Scholar 

  • Eckmiller, R.: A model of the neural network controlling foveal pursuit eye movements. In: Progress in Oculomotor Research, pp. 541–550. Fuchs, A.F., Becker, W., (eds.) New York: Elsevier/North-Holland 1981

    Google Scholar 

  • Eckmiller, R., Mackeben, M.: Pre-motor single unit activity in the monkey brain stem correlated with eye velocity during pursuit. Brain Res.184, 210–214 (1980)

    Google Scholar 

  • Greene, D.F., Ward, F.E.: Human eye tracking as a sequential input adaptive process. Biol. Cybern.33, 1–7 (1979)

    Google Scholar 

  • Kleinman, D.L., Pattipati, K.R., Ephrath, A.R.: Quantifying an internal model of tartet motion in a manual tracking task. IEEE Syst. Man Cybern. SMC-10, 624–636 (1980)

    Google Scholar 

  • Kowler, E., Steinman R.M.: The effect of expectations on slow oculomotor control. Vision Res.19, 619–646 (1979)

    Google Scholar 

  • Lanman, J., Bizzi, E., Allum, J.: The coordination of eye and head movement during smooth pursuit. Brain Res.153 39–53 (1978)

    Google Scholar 

  • Leigh, R.J., Newman, S.A., Zee, D.S., Miller, N.R.: Visual following during stimulation of an immobile eye (the open loop condition). Vision Res.22, 1193–1197 (1982)

    Google Scholar 

  • Mack, A., Fendrich, R., Wong, E.: Is perceived motion a stimulus for smooth pursuit. Vision Res.22, 77–88 (1982)

    Google Scholar 

  • McDonald, J.D., Bahill, A.T.: Zero-latency tracking of predictable targets by time-delay systems. Intl. J. Control (1983) (in press)

  • McRuer, D.T.: Human dynamics in man-machine systems. Automatica16, 237–253 (1980)

    Google Scholar 

  • Michael, J.A., Melvile Jones, G.: Dependence of visual tracking capability upon stimulus predictability. Vision Res.6, 707–716 (1966)

    Google Scholar 

  • Rashbass, C.: The relationship between saccadic and smooth tracking eye movements. J. Physiol.159, 326–338 (1961)

    Google Scholar 

  • Rashbass, C.: Reflexions on the control of vergence. In: Models of oculomotor behavior and control, pp. 139–148. Zuber, B.L. (ed.). Boca Raton, FL: CRC Press 1981

    Google Scholar 

  • Robinson, D.A.: Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications, pp. 337–374. Lenerstrand, G., Bach-y-Rita, P. (eds.). New York: Pergamon Press 1975

    Google Scholar 

  • Schalen, L.: Quantification of tracking eye movements in normal subjects. Acta Otolaryngol.90, 404–413 (1980)

    Google Scholar 

  • Stark, L., Vossius, G., Young, L.R.: Predictive control of eye tracking movements. IRE Trans. Human Factors Electron. HFE-3, 52–57 (1962)

    Google Scholar 

  • Steinbach, M.: Pursuing the perceived rather than the retinal stimulus. Vision Res.16, 1371–1376 (1976)

    Google Scholar 

  • Van Gisbergen, J.A.M., Robinson, D.A., Gielen, S.: A quantitative analysis of generation of saccadic eye movements by burst neurons. J. Neurophysiol.45, 417–422 (1981)

    Google Scholar 

  • Westheimer, G.: Eye movement responses to a horizontally moving visual stimulus. AMA Arch Ophthalmol.52, 932–941 (1954)

    Google Scholar 

  • Westheimer, G.: Mechanism of saccadic eye movements. AMA Arch. Ophthamol.52, 710–724 (1954)

    Google Scholar 

  • Winterson, B.J., Steinman, R.M.: The effect of luminance on human smooth pursuit of perifoveal and foveal targets. Vision Res.18, 1165–1172 (1978)

    Google Scholar 

  • Wyatt, H.J., Pola, J.: Slow eye movements to eccentric targets. Invest. Ophthalmol. Vis. Sci.21, 477–483 (1981)

    Google Scholar 

  • Wyatt, H.J., Pola, J.: The role of perceived motion in smooth pursuit eye movements. Vision Res.19, 613–618 (1979)

    Google Scholar 

  • Yasui, S., Young, L.: Perceived visual motion as effective stimulus to pursuit eye movement system. Science190, 906–908 (1975)

    Google Scholar 

  • Young, L.: Pursuit eye tracking movements. In: The control of eye movements, pp. 429–443. Bach-y-Rita, P., Collins, C.C., Hyde, J. (eds.). New York: Academic Press 1971

    Google Scholar 

  • Young, L.: Pursuit eye movements — what is being pursued. In: Control of gaze by brain stem neurons, pp 29–36. Baker, R., Berthoz, A. (eds.). Amsterdam: Elsevier/North-Holland Biomedical Press 1977

    Google Scholar 

  • Young, L.R.: The sampled data model and foveal dead zone for saccades. In: Models of oculomotor behavior and control, pp. 43–74. Zuber, B.L. (ed.). Boca Raton, FL: CRC Press 1981

    Google Scholar 

  • Young, L.R., Stark, L.: Variable feedback experiments testing a sampled data model for eye tracking movements. IEEE Trans. Human Factors Electron. HFE-4, 38–51 (1963)

    Google Scholar 

  • Zuber, B.L., Semmlow, J.L., Stark, L.: Frequency characteristics of the saccadic eye movement. Biophys J.8, 1288–1298 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahill, A.T., McDonald, J.D. Model emulates human smooth pursuit system producing zero-latency target tracking. Biol. Cybern. 48, 213–222 (1983). https://doi.org/10.1007/BF00318089

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318089

Keywords

Navigation