Skip to main content
Log in

The development of the human brain, including the longitudinal zoning in the diencephalon at stage 15

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Twenty-six embryos (6–11 mm) of stage 15 (approximately 33 days) were studied in detail and graphic reconstructions of three of them were prepared. Characteristic features of this stage include closed lens vesicles, presence of nasal pits, and retinal pigment.

The neuromeric pattern is still visible. Each cerebral hemisphere is limited by the torus hemisphericus internally and by the di-telencephalic sulcus externally. The medial (diencephalic) eminence of the basal nuclei (previously misinterpreted by others as the lateral) had appeared in stage 14, and the lateral eminence, which is telencephalic, is now distinguishable. The amygdaloid body in stages 14 and 15 is derived from the medial eminence. The hippocampal thickening is identifiable in the dorsomedial part of the cerebral hemisphere. Medial and basal forebrain bundles are developing. The olfactory eminence is visible. Future olfactory bulb and tubercle possess an intermediate layer.

The wall of the diencephalon presents five longitudinal zones: epithalamus, dorsal thalamus, ventral thalamus, subthalamus, and hypothalamus. The primordium of the epiphysis cerebri is beginning in the more advanced embryos.

The sulcus limitans ends rostrally at the midbrain (M1) and is not continuous with the hypothalamic sulcus. Hence the alar/basal distinction does not arise in the forebrain. In the roof of the midbrain (M2) the mesencephalic evagination already noticed at stage 14 is characteristic. It is suggested that it may function as a temporary circumventricular organ.

The precursors of some new tracts are identifiable: habenulo-interpeduncular, medial tectobulbar, and mamillotegmental fibres. Commissures include the supramamillary, that of the superior colliculi, and (in some embryos) the first fibres of the posterior commissure. Nuclei include the habenular, mamillary, and probably subthalamic.

The cerebellum, the beginning of which was already noted at stages 13 and 14, consists of (1) a rostral part that arises from the alar plate of the isthmic segment and will form the superior medullary velum and part of the corpus cerebelli; and (2) a caudal part that develops from rhombomere 1. The involvement of the isthmic segment, first elucidated with stage 14, has not been observed in previous reports. All cranial nerves except the olfactory and optic are present in the more advanced embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Aff. :

Common afferent tract

A-H :

Adenohypophysial pouch

Amyg. :

Area of the future amygdaloid body

Aq. :

Aqueduct

Bas. :

Basilary artery

Cer. :

Cerebellum

Ch. :

Chiasmatic plate

Comm. :

Commissural plate

x 4 :

Commissure of the trochlear nerve

x S.C. :

Commissure of the superior colliculi

x Sm. :

Supramamillary commissure

d.Th. :

Dorsal thalamus

D :

Diencephalon (D 1 rostral, D 2 caudal part)

End. :

Endolymphatic duct

Ep. :

Epiphysis cerebri

Hab. :

Habenular nucleus

Hem. :

Cerebral hemisphere

Hip. :

Hippocampus

Hyp.C. :

Hypothalamic cell cord

Hyp.S. :

Hypothalamic sulcus

H-th :

Hypothalamus

I.c.a. :

Internal carotid artery

Is. :

Isthmic segment

Lat.E. :

Lateral ventricular eminence

L.t. :

Lamina terminalis

M :

Mesencephalon (M 1 rostral, M 2 caudal part)

Ma. :

Mamillary area

Med.E. :

Medial ventricular eminence

M.Ev. :

Mesencephalic evagination

MLF :

Medial longitudinal fasciculus

Nas. :

Nasal pit

Not. :

Notochord

Olf. :

Olfactory area

Olf.E. :

Olfactory eminence

Opt. :

Optic cup

Opt.G. :

Optic groove

Ot. :

Otic vesicle

Pr.-H.T :

Preoptico-hypothalamotegmental tract

Pr.R. :

Preoptic recess

Ret.F :

Retinal fissure

Rh :

Rhombomere

Sept. :

Septum medullae

S.l. :

Sulcus limitans

Syn. :

Synencephalon

S-th. :

Subthalamus

Tel. :

Telencephalon

Tel.m. :

Telencephalon medium

T.hem. :

Torus hemisphericus

Tr. :

Trachea

v.Th. :

Ventral thalamus

Vel. :

Velum transversum

References

  • Altman J, Bayer SA (1986) The Development of the Rat Hypothalamus. Adv Anat Embryol Cell Biol 100:1–178

    Google Scholar 

  • Barniville HL (1915) The morphology and histology of a human embryo of 8.5 mm. J Anat Physiol 49:1–71

    Google Scholar 

  • Bartelmez GW, Dekaban AS (1962) The early development of the human brain. Contrib Embryol Carnegie Instn 37:13–32

    Google Scholar 

  • Blechschmidt E (1963) Der menschliche Embryo. Dokumentationen zur kinetischen Anatomie. Schattauer, Stuttgart

    Google Scholar 

  • Bossy J (1980) Development of olfactory and related structures in staged human embryos. Anat Embryol 161:225–236

    Google Scholar 

  • Couly GF, LeDouarin NM (1985) Mapping of the early neural primordium in quail-chick chimeras. I. Developmental relationships between placodes, facial ectoderm, and prosencephalon. Dev Biol 110:422–439

    Google Scholar 

  • Couly GF, LeDouarin NM (1987) Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev Biol 120:198–214

    Google Scholar 

  • Elze C (1907) Beschreibung eines menschlichen Embryo von zirka 7 mm größter Länge unter besonderer Berücksichtigung der Frage nach der Entwickelung der Extremitätenarterien und nach der morphologischen Bedeutung der lateralen Schilddrüsenanlage. Anat Hefte 35:411–492

    Google Scholar 

  • Goodrum GR, Jacobson AG (1981) Cephalic flexure formation in the chick embryo. J Exp Zool 216:399–408

    Google Scholar 

  • Groth W (1939) Der Ursprung der Labyrinthplacode und des Ganglion statoacusticum im Vergleich zur Genese des Riechorgans beim Kaninchen. Zugleich ein Beitrag zur Homologisierung der Genese von Gehör-, Riech- und Sehorgan beim Säuger. Z Mikrosk Anat Forsch 45:393–442

    Google Scholar 

  • His W (1887) Die Entwickelung der ersten Nervenbahnen beim menschlichen Embryo. Uebersichtliche Darstellung. Arch Anat Entwicklungsgesch 368–378

  • His W (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate. Untersuchungsergebnisse. Hirzel, Leipzig

    Google Scholar 

  • Humphrey T (1968) The development of the human amygdala during early embryonic life. J Comp Neurol 132:135–165

    Google Scholar 

  • Kahle W (1956) Zur Entwicklung des menschlichen Zwischenhirnes. Studien über Matrixphasen und die örtlichen Reifungsunterschiede im embryonalen menschlichen Gehirn. II. Mitteilung. Dtsch Z Nervenheilk 175:259–318

    Google Scholar 

  • Keyser A (1972) The development of the diencephalon of the Chinese hamster: An investigation of the validity of the criteria of subdivision of the brain. Acta Anat [Suppl] 59-1, 83:1–178

    Google Scholar 

  • Kuhlenbeck H (1948) The derivatives of the thalamus ventralis in the human brain and their relation to the so-called subthalamus. Mil Surg 102:433–447

    Google Scholar 

  • Kuhlenbeck H (1970) The Central Nervous System of Vertebrates, vol 3, part I, Structural Elements: Biology of Nervous Tissue. Karger, Basel

    Google Scholar 

  • Kuhlenbeck H (1973) The Central Nervous System of Vertebrates, vol 3, part II, Overall Morphologic Pattern. Karger, Basel

    Google Scholar 

  • Kuhlenbeck H (1977) The Central Nervous System of Vertebrates, vol. 5, part I, Derivatives of the Prosencephalon: Diencephalon and Telencephalon. Karger, Basel

    Google Scholar 

  • Lammers GJ (1976) On the development of the strio-amygdaloid complex in the Chinese hamster, Cricetulus griseus. Thesis, Nijmegen

  • Mall FP (1891) A human embryo twenty-six days old. J Morphol 5:459–480

    Google Scholar 

  • Müller F, O'Rahilly R (1983) The first appearance of the major divisions of the human brain at stage 9. Anat Embryol 168:419–432

    Google Scholar 

  • Müller F, O'Rahilly R (1984) Cerebral dysraphia (future anencephaly) in a human twin embryo at stage 13. Teratology 30:167–177

    Google Scholar 

  • Müller F, O'Rahilly R (1985) The first appearance of the neural tube and optic primordium in the human embryo at stage 10. Anat Embryol 172:157–169

    Google Scholar 

  • Müller F, O'Rahilly R (1986) The development of the human brain and the closure of the rostral neuropore at stage 11. Anat Embryol 175:205–222

    Google Scholar 

  • Müller F, O'Rahilly R (1987) The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol 176:413–430

    Google Scholar 

  • Müller F, O'Rahilly R (1988a) The development of the human brain from a closed neural tube at stage 13. Anat Embryol 177:203–224

    Google Scholar 

  • Müller F, O'Rahilly R (1988b) The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol 177:495–511

    Google Scholar 

  • O'Rahilly R, Müller F (1987) Developmental Stages in Human Embryos, Including a Revision of Streeter's “Horizons” and a Survey of the Carnegie Collection. Carnegie Institution of Washington, Washington, DC, Publ no 637

    Google Scholar 

  • O'Rahilly R, Müller F, Hutchins GM, Moore GW (1984) Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development. Am J Anat 171:243–257

    Google Scholar 

  • O'Rahilly R, Müller F, Hutchins GM, Moore GW (1987) Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development. Am J Anat 180:69–86

    Google Scholar 

  • Padget DH (1948) The development of the cranial arteries in the human embryo. Contrib Embryol Carneg Instn 32:205–261

    Google Scholar 

  • Padget DH (1970) Neuroschisis and human embryonic maldevelopment. J Neuropathol Exp Neurol 29:192–216

    Google Scholar 

  • Smart IHM (1985) Differential growth of the cell production systems in the lateral wall of the developing mouse telencephalon. J Anat 141:219–229

    Google Scholar 

  • Thompson P (1915) Description of a human embryo, 7 mm greatest length. Studies in Anatomy, University of Birmingham, pp 1–50

  • Volcher R (1963) Le système nerveux périphérique d'un embryon humain de 8 mm. Arch Biol 74:95–127

    Google Scholar 

  • Windle FW, Fitzgerald JE (1942) Development of the human mesencephalic trigeminal root and related neurons. J Comp Neurol 77:597–608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by research grant No. HD-16702, Institute of Child Health and Human Development, National Institutes of Health (USA)

Numbers 3 to 12 indicate cranial nerves. Where cranial nerves and rhombomeres are labelled in the same figure, the latter are in bold-face numbers. The bars inFigs. 2, 4, 5, 8, and 11 indicate 0.2 mm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, F., O'Rahilly, R. The development of the human brain, including the longitudinal zoning in the diencephalon at stage 15. Anat Embryol 179, 55–71 (1988). https://doi.org/10.1007/BF00305100

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00305100

Key words

Navigation