Skip to main content
Log in

Vestibular and saccadic influences on dorsal and ventral nuclei of the lateral geniculate body

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

  1. 1.

    Chronically prepared, awake cats were rotated in the horizontal plane with the head fixed. Single unit activity from the lateral geniculate body (LGB) was recorded together with eye position.

  2. 2.

    Over 165 neurons, 101 (61%) were influenced by rotation. 64 detected only the onset and the offset of vestibular stimulation without respect to the direction or the velocity of the rotatory movement. Global increase in firing was by far the most frequent response. A large proportion of these neurons were located within the dorsal nucleus of LGB, and had discrete receptive fields.

  3. 3.

    30 other neurons were influenced by rotation asymetrically. In 22 cases, firing rate increased during rotation contralateral to the recorded side. The reverse pattern was observed in 8 cases. In the direction of rotation where firing increased, maximum firing rate usually corresponded to the maximum amplitude of the velocity vector. In the opposite direction, firing decreased only slightly with respect to background activity.

  4. 4.

    The 7 other neurons were influenced only by angular velocity, and not by direction of rotation. Firing increased during rotation, and stopped when the direction was reverted, i.e., when velocity was equal to zero.

  5. 5.

    Neurons described under (3) and (4) poorly responded to light. Only 4 had a discrete receptive field. A large proportion were located in the ventral nucleus of LGB.

  6. 6.

    Over 157 neurons from the same sample, 82 (52%) were influenced by saccades in the dark. This number includes different types of saccade-locked changes. The most frequent type was an increase in firing about 250 msec after saccade onset, and clearly related to saccades in one direction (e.g., right or left) only. About a half of the neurons influenced by saccades responded to light, and 21 had a discrete receptive field. A large proportion of neurons influenced by saccades were located within the dorsal nucleus of LGB. However, about 20 were located in the ventral nucleus; they correspond to neurons described under (3), which also responded to the direction of rotation.

  7. 7.

    Possible contributions of these vestibular and saccadic influences on LGB to the control of visuomotor behavior, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altman, J., Carpenter, M.B.: Fiber projections of the superior colliculus in the cat. J. comp. Neurol. 116, 157–178 (1961)

    Google Scholar 

  • Angaut, P.: The fastigiotectal projection. An anatomical experimental study. Brain Res. 13, 186–189 (1969)

    Google Scholar 

  • Berlucchi, G., Munson, J.B., Rizzolatti, G.: Surgical immobilization of the eye and pupil, permitting stable photic stimulation of freely moving cats. Electroenceph. clin. Neurophysiol. 21, 504–505 (1966)

    Google Scholar 

  • Bisti, S., Maffei, L., Piccolino, M.: Variations of the visual responses of the superior colliculus in relation to body roll. Science 175, 456–457 (1972)

    Google Scholar 

  • Bizzi, E.: Vestibular effects on the visual input. In: Handbook of Sensory Physiology, the vestibular system. Ed. by H.H. Kornhuber. Berlin-Heidelberg-New York: Springer (in press)

  • Bond, H.W., Ho, P.: Solid miniature silver-silver chloride electrodes for chronic implantation. Electroenceph. clin. Neurophysiol. 28, 206–208 (1970)

    Google Scholar 

  • Bowsher, D.: Reticular projections to lateral geniculate in cat. Brain Res. 23, 247–249 (1970)

    Google Scholar 

  • Brodal, A.: Anatomy of the vestibulo reticular connections and possible “ascending” vestibular pathways from the reticular formation. Progr. Brain Res. 37, 553–565 (1972)

    Google Scholar 

  • Buser, P., Segundo, J.P.: Influences reticulaires somesthésiques et corticales au niveau du corps genouillé latéral du thalamus chez le chat. C.R. Acad. Sci. (Paris) 249, 571–573 (1959)

    Google Scholar 

  • Buttner, U., Fuchs, A.F.: Influence of saccadic eye movements on unit activity in simian lateral geniculate and pregeniculate nuclei. J. Neurophysiol. 36, 127–141 (1973)

    Google Scholar 

  • Campbell, C.B.G.: Evolutionary patterns in mammalian diencephalic visual nuclei and their fiber connections. Brain Behav. Evol. 6, 218–236 (1972)

    Google Scholar 

  • Corrazza, R., Lombroso, C.T.: The neuronal dark discharge during eye movements in the cat. Brain Res. 34, 345–360 (1971)

    Google Scholar 

  • Cragg, B.G.: The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vision Res. 9, 733–747 (1969)

    Google Scholar 

  • Duensing, F., Schaefer, K.P.: Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontalbeschleunigungen unter besonderer Berücksichtigung des vestibulären Nystagmus. Arch. Psychiat. Nervenkr. 198, 225–252 (1958)

    Google Scholar 

  • Gernandt, B.: Response of mammalian vestibular neurons to horizontal rotation and caloric stimulation. J. Neurophysiol. 12, 173–184 (1949)

    Google Scholar 

  • Gernandt, B.: Midbrain activity in response to vestibular stimulation. Acta physiol. scand. 21, 73–81 (1950)

    Google Scholar 

  • Gernandt, B.E.: Vestibular mechanisms. In: J. Field, H.W. Magoun and V.E. Hall (Eds.). Handbook of Physiology, Neurophysiology, Vol. I, pp. 549–564. Washington: American Physiological Society 1959

    Google Scholar 

  • Glickstein, M., King, R.A., Miller, J., Berkley, M.: Cortical projections from the dorsal lateral geniculate nucleus of cats. J. comp. Neurol. 130, 55–76 (1967)

    Google Scholar 

  • Goldberg, J.M., Fernández, C.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J. Neurophysiol. 34, 635–660 (1971)

    Google Scholar 

  • Graybiel, A.M.: Visuo-cerebellar and cerebello-visual connections involving the ventral lateral geniculate nucleus, Exper. Brain Res. 20, 303–306 (1974)

    Google Scholar 

  • Gregory, R.L.: Eye movements and the stability of the visual world. Nature (Lond.) 182, 1214–1216 (1958)

    Google Scholar 

  • Grusser, O.J., Grusser-Cornhels, U., Saur, G.: Reaktionen einzelner Neurone im optischen Cortex der Katze nach elektrischer Polarisation des Labyrinths. Pflügers Arch. ges. Physiol. 259, 593–612 (1959)

    Google Scholar 

  • Hollander, H.: The projection from the visual cortex to the lateral geniculate body. An experimental study with silver impregnation methods in the cat. Exp. Brain Res. 10, 219–235 (1970)

    Google Scholar 

  • Holst, E. von: Relations between the central nervous system and the peripheral organs. Brit. J. Anim. Behav. 2, 89–94 (1954)

    Google Scholar 

  • Jasper, H.H., Ajmone-Marsan, C.: A stereotaxic atlas of the diencephalon of the cat. National Research Council of Canada. Ottawa, 1954

    Google Scholar 

  • Jeannerod, M.: Saccade-correlated events in the lateral geniculate body. Bibl. ophthal. (Basel) 82, 189–198 (1972)

    Google Scholar 

  • Jeannerod, M., Putkonen, P.T.S.: Oculomotor influences on lateral geniculate body neurons. Brain Res. 24, 125–129 (1970)

    Google Scholar 

  • Jeannerod, M., Putkonen, P.T.S.: Lateral geniculate unit activity and eye movements: saccade-locked changes in dark and in light. Exp. Brain Res. 13, 533–546 (1971)

    Google Scholar 

  • Jones, G.M., Milsum, J.H.: Characteristics of neural transmission from the semicircular canal to the vestibular nuclei of cats. J. Physiol. (Lond.) 209, 295–316 (1970)

    Google Scholar 

  • Jordan, H., Hollander, H.: The structure of the ventral part of the lateral geniculate nucleus. A cyto and myelo-architectonic study in the cat. J. comp. Neurol. 145, 259–272 (1972)

    Google Scholar 

  • Jung, R., Kornhuber, H.H., Da Fonseca, J.S.: Multisensory convergence on cortical neurons. In: Brain mechanisms, Moruzzi, Fessard and Jasper, Editors. Amsterdam: Elsevier 1963

    Google Scholar 

  • Kornhuber, H.H., Da Fonseca, J.J.: Optovestibular integration in the cat's cortex. A study of sensory convergence on cortical neurons. In: M.B. Bender, Ed.: The oculomotor system, pp. 239–279. New York: Harper and Row 1964

    Google Scholar 

  • Laties, A.M., Sprague, J.M.: The projection of optic fibers to the visual centers of the cat. J. comp. Neurol. 127, 35–70 (1966)

    Google Scholar 

  • Magnin, M., Jeannerod, M.: Fixation non traumatique de la tête chez le chat éveillé. C.R. Soc. Biol. (Paris) 167, 996–998 (1973)

    Google Scholar 

  • Marty, R., Benoit, O., Larguier, M.M.: Etude topographique et stratigraphique des projections du corps genouillé latéral sur le cortex cérébral. Arch. ital. Biol. 107, 723–742 (1969)

    Google Scholar 

  • Melvill Jones, G., Milsum, J.H.: Frequency response analysis of central vestibular unit activity resulting from rotational stimulation of the semicircular canals. J. Physiol. (Lond.) 219, 191–215 (1971)

    Google Scholar 

  • Meulders, M., Colle, J., Godfraind, J.M.: Evoked sensory responses of somatic origin in the lateral geniculate body. Arch. int. Physiol. Biochem. 72, 346 (1964)

    Google Scholar 

  • Mickle, W.A., Ades, H.W.: Rostral projection pattern of the vestibular system. Amer. J. Physiol. 176, 243–246 (1954)

    Google Scholar 

  • Montero, V.M., Robles, L.: Saccadic modulation of cell discharges in the lateral geniculate nucleus. Vision Res. Suppl. 3, 253–268 (1971)

    Google Scholar 

  • Morrell, F.: Integrative properties of parastriate neurons. In: Brain and Human behavior, Karczmar and Eccles, Ed. pp. 259–289. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Mukhametov, L.M., Rizzolati, G., Trabardi, V.: Spontaneous activity of neurons of nucleus reticularis thalami in freely moving cats. J. Physiol. (Lond.) 210, 651–667 (1970)

    Google Scholar 

  • Nauta, W.J.H., Kuypers, H.G.J.M.: Some ascending pathways in the brainstem reticular formation. In: H. Jasper, Ed.: Reticular formation of the brain, pp. 3–30. Boston: Little, Brown & Co. 1958

    Google Scholar 

  • Niimi, K., Sprague, J.M.: Thalamo cortical organisation of the visual system in the cat. J. comp. Neurol. 138, 219–250 (1970)

    Google Scholar 

  • Niimi, K., Kanaseki, T., Takimoto, T.: The comparative anatomy of the ventral nucleus of the lateral geniculate body in mammals. J. comp. Neurol. 121, 313–324 (1963)

    Google Scholar 

  • Noda, H., Freeman, R.B., Creutzfeldt, O.D.: Neuronal correlates of eye movements in the visual cortex of the cat. Science 175, 661–664 (1972)

    Google Scholar 

  • Ogawa, T.: Midbrain reticular influences upon single neurons in lateral geniculate nucleus. Science 139, 343–344 (1963)

    Google Scholar 

  • Papaioannou, J.: Electrical stimulation of vestibular nuclei: effects on spontaneous activity of lateral geniculate nucleus neurons. Arch. ital. Biol. 110, 217–233 (1972a)

    Google Scholar 

  • Papaioannou, J.: Electrical stimulation of vestibular nuclei: effects on light evoked activity of lateral geniculate nucleus neurons. Pflügers Arch. 334, 129–140 (1972b)

    Google Scholar 

  • Papaioannou, J.: Effects of caloric labyrinthine stimulation on the spontaneous activity of lateral geniculate nucleus neurons in the cat. Exp. Brain Res. 17, 1–9 (1973)

    Google Scholar 

  • Pernier, J., Echallier, J.F., Gerin, P.: Système d'analyse des relations entre phénomènes lents et activité neuronale (In preparation)

  • Polyak, S.: The vertebrate visual system. Chicago: University of Chicago Press 1957

    Google Scholar 

  • Putkonen, P.T.S., Magnin, M., Jeannerod, M.: Directional responses to head rotation in neurons, from the ventral nucleus of the lateral geniculate body. Brain Res. 61, 407–411 (1973)

    Google Scholar 

  • Roucoux, A., Crommelink, M.: Influence of nystagmic and spontaneous activity on superior colliculus neurons in curarized cats. Experientia (Basel) 27, 1181–1182 (1971)

    Google Scholar 

  • Roucoux, A., Crommelink, M., Roucoux-Hanus, M.: Potentiels évoqués au niveau des tubercules quadrijumeaux antérieurs du chat par la stimulation labyrinthique. J. Physiol. (Paris) 65, 488 A (1972)

    Google Scholar 

  • Satinsky, D.: Reticular influences on lateral geniculate neurone activity. Electroenceph. clin. Neurophysiol. 25, 543–549 (1968)

    Google Scholar 

  • Scheibel, M.E., Scheibel, A.B.: Structural substrates for integrative patterns in the brainstem reticular core. In: H. Jasper, Ed.: Reticular formation of the brain, pp. 31–55. Boston: Little, Brown & Co. 1958

    Google Scholar 

  • Scheibel, M.E., Scheibel, A.B.: The organization of the nucleus reticularis thalami: a golgi study. Brain Res. 1, 43–62 (1966)

    Google Scholar 

  • Schwartzkroin, P.A.: Effects of round window stimulation on unit discharges in the visual cortex and superior colliculus. Exp. Brain Res. 17, 527–538 (1973)

    Google Scholar 

  • Shimazu, H., Precht, W.: Tonic and kinetic responses of cat's vestibular neurons to horizontal angular accelerations. J. Neurophysiol. 28, 991–1013 (1965)

    Google Scholar 

  • Singer, W.: The effect of mesencephalic reticular stimulation on intracellular potentials of cat lateral geniculate neurons. Brain Res. 61, 35–54 (1973)

    Google Scholar 

  • Singer, W., Dräger, U.: Postsynaptic potential in relay neurons of cat lateral geniculate nucleus after stimulation of the mesencephalic reticular formation. Brain Res. 41, 214–220 (1972)

    Google Scholar 

  • Szentágothai, J.: Lateral geniculate body structure and eye movement. Bibl. ophthal. (Basel) 82, 178–188 (1972)

    Google Scholar 

  • Tatton, W.G., Crapper, D.R.: Central tegmental alteration of oat lateral geniculate activity. Brain Res. 47, 371–387 (1972)

    Google Scholar 

  • Wepsic, J.G.: Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Exp. Neurol. 15, 299–318 (1966)

    Google Scholar 

  • Wilson, M.E., Cragg, B.G.: Projections from the lateral geniculate nucleus in the cat and the monkey. J. Anat. (Lond.) 101, 677–692 (1967)

    Google Scholar 

  • Wurtz, R.H.: Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. J. Neurophysiol. 32, 987–994 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by INSERM and FRMF, Paris. We wish to thank also U.E.R. de Biologie Humaine, Université Claude Bernard, Lyon, for providing a grant to M.M.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnin, M., Jeannerod, M. & Putkonen, P. Vestibular and saccadic influences on dorsal and ventral nuclei of the lateral geniculate body. Exp Brain Res 21, 1–18 (1974). https://doi.org/10.1007/BF00234255

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234255

Key words

Navigation