Skip to main content
Log in

Detecting higher-order interactions among the spiking events in a group of neurons

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We propose a formal framework for the description of interactions among groups of neurons. This framework is not restricted to the common case of pair interactions, but also incorporates higher-order interactions, which cannot be reduced to lower-order ones. We derive quantitative measures to detect the presence of such interactions in experimental data, by statistical analysis of the frequency distribution of higher-order correlations in multiple neuron spike train data. Our first step is to represent a frequency distribution as a Markov field on the minimal graph it induces. We then show the invariance of this graph with regard to changes of state. Clearly, only linear Markov fields can be adequately represented by graphs. Higher-order interdependencies, which are reflected by the energy expansion of the distribution, require more complex graphical schemes, like constellations or assembly diagrams, which we introduce and discuss. The coefficients of the energy expansion not only point to the interactions among neurons but are also a measure of their strength. We investigate the statistical meaning of detected interactions in an information theoretic sense and propose minimum relative entropy approximations as null hypotheses for significance tests. We demonstrate the various steps of our method in the situation of an empirical frequency distribution on six neurons, extracted from data on simultaneous multineuron recordings from the frontal cortex of a behaving monkey and close with a brief outlook on future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles M (1991) Corticonis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Abeles M, Bergman H, Margalit, E, Vaadia E (1993a) Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. Neurophysiol 70:1629–1643

    PubMed  Google Scholar 

  • Abeles M, Prut Y, Bergman H, Vaadia E, Aertsen A (1993b) Integration, synchronicity and periodicity. In: Aertsen A (eds) Brain theory: spatio-temporal aspects of brain function. Elsevier, Amsterdam, pp 149–181

    Google Scholar 

  • Abeles M, Gerstein GL (1988) Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. J Neurophysiol 60:909–924

    PubMed  Google Scholar 

  • Aertsen A, Gerstein GL (1991) Dynamic aspects of neuronal cooperativity:fast stimulus-locked modulations of ‘effective connectivity’. In: Krüger J (ed) Neuronal cooperativity. Springer, Berlin Heidelberg New York, pp 52–67

    Google Scholar 

  • Aertsen A, Bonhoeffer T, Krüger J (1987) Coherent activity in neuronal populations:analysis and interpretation. In: Caianiello ER (eds) Physics of cognitive processes. World Scientific Publishing, Singapore, pp 1–34

    Google Scholar 

  • Aertsen A, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of ‘effective connectivity’. J Neurophysiol 61:900–917

    PubMed  Google Scholar 

  • Amari S (1982) Differential geometry of curved exponential families — curvatures and information loss. Ann Stat 10:357–385

    Google Scholar 

  • Amari S (1985) Differential-geometrical methods in statistics. Springer Lecture Notes in Statistics, Vol 28. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Amari S (1991) Dualistic geometry of the manifold of higher-order neurons. Neural Networks 4:443–451

    Article  Google Scholar 

  • Amari S (1994) Information geometry of the EM and em algorithms for neural networks. Tech report, Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo

  • Amari S, Kurata K, Nagaoka H (1992) Information geometry of Boltzmann machines. IEEE Trans Neural Networks 3:260–271

    Article  Google Scholar 

  • Amari S. SunHan T (1989) Statistical inference under multiterminal rate restrictions: A differential geometric approach. IEEE Trans Inf Theory 35:217–227

    Article  Google Scholar 

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J Stat Soc B 34:75–83

    Google Scholar 

  • Bishop Y, Fienberg S, Holland P (1989) Discrete multivariate analysis, 10th edn. MIT Press, Cambridge, Mass

    Google Scholar 

  • Caianiello E (1975) Synthesis of boolean nets and time behaviour of a general mathematical neuron. Biol Cybern 18:111

    PubMed  Google Scholar 

  • Caianiello E (1986) Neuronic equations revisited and completely solved. In: Palm G, Aertsen A (eds) Brain theory, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of information theory, Wiley, New York

    Google Scholar 

  • Csiszár I (1975) I-divergence geometry of probability distributions and minimization problems. Ann Probab 3:146–158

    Google Scholar 

  • Deming WE, Stephan FF (1940) On a least squares adjustment of a sampled frequency table when the expected marginals totals are known. Ann Math Stat 11:427–444

    Google Scholar 

  • Gerstein G, Aertsen A (1985) Representation of cooperative firing activity among simultaneously recorded neurons. J Ncurophysiol 54:1513–1527

    Google Scholar 

  • Gerstein GL, Bedenbaugh P, Aertsen A (1989) Neuronal assemblies. IEEE Trans Biomed Eng 36:4–14

    Google Scholar 

  • Gokhale DV, Kullback S (1978) The information in contingency tables. Dekker, New York

    Google Scholar 

  • Griffeath D (1976) Introdction to random fields. Appendix in Knapp A, Kemeny J, Snell J (eds) Denumerablc Markov chains. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Grimmett GR (1973) A theorem about random fields. Bull Lond Math Soc 5:81–84

    Google Scholar 

  • Grün S, Aertsen A, Abeles M, Gerstein G, Palm G (1994) Behaviorrelated neuron group activity in the cortex. Proc 17th Ann Meeting of the European Neurosci Association. Oxford University Press In:ENA, Oxford

  • Grün S, Aertsen A, Abeles M, Gerstein G, Palm G (1994). On the significance of coincident firing in neuron group activity. In: Elsner N, Breer H (eds) Sensory transduction. Stuttgart, Thieme. p558

    Google Scholar 

  • Hammersley JM, Clifford P (1968) Markov fields on finite graphs and lattices. University of California, Berkeley

    Google Scholar 

  • Hebb D (1949) The organization of behavior, a neurophysiological theory. Wiley, New York

    Google Scholar 

  • Hinton GE, Sejnowski TJ (1986) Learning and relearning in Boltzmann machines. (Parallel distributed processing. Vol 1) MIT Press, Cambridge, Mass pp 282–317

    Google Scholar 

  • Ireland CT, Kullback SS (1968) Contingency tables with given marginals. Biometrika 55:179–188

    PubMed  Google Scholar 

  • Ku HH, Kullback S (1968) Interaction in multidimensional contingency tables: An information theoretic approach. J Res NBS Math 72B:159–199

    Google Scholar 

  • Ku HH, Kullback S (1969) Approximating discrete probability distributions. IEEE Trans Inf Theory IT-15:444–447

    Article  Google Scholar 

  • Kullback S (1968) Information theory and statistics. Dover, New York

    Google Scholar 

  • Martignon L, Laskey BK (1995) Statistical inference methods for classifying higher order neural correlations. In: Hermann H (eds) Proceedings of the International Workshop on Supercomputers and the Brain. World Scientific, Singapore (in press)

    Google Scholar 

  • Martignon L, Hasseln H von, Palm G (1993) Modelling stochastic networks: from data to the connectivity structure. (Informatik aktuell, Subrcihe Künstliche Intelligenz) Gesamtdarstellung des Workshops auf der KI-Jahrestagung, Berlin 1993. Springer, Berlin Heidelberg New York pp 50–58

    Google Scholar 

  • Martignon L, Hasseln H von, Grün S, Palm G (1994) Modelling the nteraction in a set of neurons implicit in their frequency distribution: a possible approach to neural assemblies. In: Taddei C et al. (eds) Collected lectures of the seminar on biocybernetics. 1st di Cibernetica. Naples. Rosenberg-Sellier, Torino

    Google Scholar 

  • Miller JW, Goodman RM (1993) Probability estimation from a database. In: Cowan JD, Hanson SJ, Giles CL (eds) Advances in Neural Information Processing Systems, Vol 5. Morgan Kaufman, San Matco. 531–538

    Google Scholar 

  • Palm G (1981) Evidence, information and surprise. Biol Cybern 42:57–68

    Article  PubMed  Google Scholar 

  • Palm G, Aertsen A, Gerstein G (1988) On the significance of correlations among neuronal spike trains. Biol Cybern 59: 1–11

    Article  PubMed  Google Scholar 

  • Pinkas G (1991) Energy minimization and the satisfiability of propositional logic. In: Sejnowsky T, Touretzky D, Ellman H, Hinton G, (eds) Proc of the 1990 Connectionist Models Summer School. Morgan Kaufman, San Mateo, pp 23–31

    Google Scholar 

  • Vaadia E, Aertsen A (1992) Coding and computing in the cortex: single neuron activity and cooperative phenomena. In: Aertsen A, Braitenberg V (eds) Information processing in the cortex. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vaadia E, Bergman H, Abeles M (1989) Neuronal activities related to higher brain functions theoretical and experimental implications. IEEE Trans Biomed Eng BME 36. 25–35

    Article  Google Scholar 

  • Vaadia E, Ahissar E, Bergman H, Lavner Y (1991) Correlated activity of neurons: a neural code for higher brain functions? In: Krüger J (eds) Neuronal cooperatively. Springer. Berlin Heidelberg New York, pp 249–279

    Google Scholar 

  • Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aertsen A (1995) Dynamics of neuronal interactions in the monkey cortex to behavioral events. Nature 373:515–518

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martignon, L., Von Hassein, H., Grün, S. et al. Detecting higher-order interactions among the spiking events in a group of neurons. Biol. Cybern. 73, 69–81 (1995). https://doi.org/10.1007/BF00199057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199057

Keywords

Navigation