Skip to main content

How Can We Identify Ictal and Interictal Abnormal Activity?

  • Chapter
  • First Online:
Book cover Issues in Clinical Epileptology: A View from the Bench

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 813))

Abstract

The International League Against Epilepsy (ILAE) defined a seizure as “a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain.” This definition has been used since the era of Hughlings Jackson, and does not take into account subsequent advances made in epilepsy and neuroscience research. The clinical diagnosis of a seizure is empirical, based upon constellations of certain signs and symptoms, while simultaneously ruling out a list of potential imitators of seizures. Seizures should be delimited in time, but the borders of ictal (during a seizure), interictal (between seizures) and postictal (after a seizure) often are indistinct. EEG recording is potentially very helpful for confirmation, classification and localization. About a half-dozen common EEG patterns are encountered during seizures. Clinicians rely on researchers to answer such questions as why seizures start, spread and stop, whether seizures involve increased synchrony, the extent to which extra-cortical structures are involved, and how to identify the seizure network and at what points interventions are likely to be helpful. Basic scientists have different challenges in use of the word ‘seizure,’ such as distinguishing seizures from normal behavior, which would seem easy but can be very difficult because some rodents have EEG activity during normal behavior that resembles spike-wave discharge or bursts of rhythmic spiking. It is also important to define when a seizure begins and stops so that seizures can be quantified accurately for pre-clinical studies. When asking what causes seizures, the transition to a seizure and differentiating the pre-ictal, ictal and post-ictal state is also important because what occurs before a seizure could be causal and may warrant further investigation for that reason. These and other issues are discussed by three epilepsy researchers with clinical and basic science expertise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abend NS, Wusthoff CJ (2012) Neonatal seizures and status epilepticus. J Clin Neurophysiol 29:441–448

    Article  PubMed Central  PubMed  Google Scholar 

  2. Adams RD, Victor M, Ropper AH (1997) Principles of neurology. McGraw Hill Health Professions Division, New York

    Google Scholar 

  3. Aird RB, Masland RL, Woodbury DM (1984) The epilepsies: a critical review. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  4. Aldenkamp AP, Beitler J, Arends J, van der Linden I, Diepman L (2005) Acute effects of subclinical epileptiform EEG discharges on cognitive activation. Funct Neurol 20:23–28

    PubMed  Google Scholar 

  5. Allen PJ, Fish DR, Smith SJ (1992) Very high-frequency rhythmic activity during SEEG suppression in frontal lobe epilepsy. Electroencephalogr Clin Neurophysiol 82:155–159

    Article  CAS  PubMed  Google Scholar 

  6. Avoli M, D’Antuono M, Louvel J, Kohling R, Biagini G, Pumain R, D’Arcangelo G, Tancredi V (2002) Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog Neurobiol 68:167–207

    Article  CAS  PubMed  Google Scholar 

  7. Blume WT, Young GB, Lemieux JF (1984) EEG morphology of partial epileptic seizures. Electroencephalogr Clin Neurophysiol 57:295–302

    Article  CAS  PubMed  Google Scholar 

  8. Bragin A, Engel J Jr, Wilson CL, Fried I, Mathern GW (1999) Hippocampal and entorhinal cortex high-frequency oscillations (100–500 hz) in human epileptic brain and in kainic acid–treated rats with chronic seizures. Epilepsia 40:127–137

    Article  CAS  PubMed  Google Scholar 

  9. Bragin A, Wilson CL, Fields T, Fried I, Engel J Jr (2005) Analysis of seizure onset on the basis of wideband EEG recordings. Epilepsia 46(Suppl 5):59–63

    Article  PubMed  Google Scholar 

  10. Buzsaki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398:242–252

    Article  CAS  PubMed  Google Scholar 

  11. Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–570

    Article  CAS  PubMed  Google Scholar 

  12. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    Article  CAS  PubMed  Google Scholar 

  13. Buzsaki G, Laszlovszky I, Lajtha A, Vadasz C (1990) Spike-and-wave neocortical patterns in rats: genetic and aminergic control. Neuroscience 38:323–333

    Article  CAS  PubMed  Google Scholar 

  14. Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171

    Article  CAS  PubMed  Google Scholar 

  15. Carriero G, Arcieri S, Cattalini A, Corsi L, Gnatkovsky V, de Curtis M (2012) A guinea pig model of mesial temporal lobe epilepsy following nonconvulsive status epilepticus induced by unilateral intrahippocampal injection of kainic acid. Epilepsia 53:1917–1927

    Article  CAS  PubMed  Google Scholar 

  16. Chassoux F, Landre E, Rodrigo S, Beuvon F, Turak B, Semah F, Devaux B (2008) Intralesional recordings and epileptogenic zone in focal polymicrogyria. Epilepsia 49:51–64

    Article  PubMed  Google Scholar 

  17. Chen H, Zhuang P, Miao SH, Yuan G, Zhang YQ, Li JY, Li YJ (2010) Neuronal firing in the ventrolateral thalamus of patients with Parkinson’s disease differs from that with essential tremor. Chin Med J (Engl) 123:695–701

    Google Scholar 

  18. Chung WK, Shin M, Jaramillo TC, Leibel RL, LeDuc CA, Fischer SG, Tzilianos E, Gheith AA, Lewis AS, Chetkovich DM (2009) Absence epilepsy in apathetic, a spontaneous mutant mouse lacking the h channel subunit, hcn2. Neurobiol Dis 33:499–508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378:75–78

    Article  CAS  PubMed  Google Scholar 

  20. Coenen AM, Van Luijtelaar EL (2003) Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet 33:635–655

    Article  CAS  PubMed  Google Scholar 

  21. Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421

    Article  CAS  PubMed  Google Scholar 

  22. Colom LV, Garcia-Hernandez A, Castaneda MT, Perez-Cordova MG, Garrido-Sanabria ER (2006) Septo-hippocampal networks in chronically epileptic rats: potential antiepileptic effects of theta rhythm generation. J Neurophysiol 95:3645–3653

    Article  PubMed  Google Scholar 

  23. Cossu M, Cardinale F, Castana L, Citterio A, Francione S, Tassi L, Benabid AL, Lo Russo G (2005) Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures. Neurosurgery 57:706–718

    Article  PubMed  Google Scholar 

  24. Covanis A (2005) Photosensitivity in idiopathic generalized epilepsies. Epilepsia 46(Suppl 9):67–72

    Article  PubMed  Google Scholar 

  25. D’Ambrosio R, Fairbanks JP, Fender JS, Born DE, Doyle DL, Miller JW (2004) Post-traumatic epilepsy following fluid percussion injury in the rat. Brain 127:304–314

    Article  PubMed Central  PubMed  Google Scholar 

  26. D’Ambrosio R, Miller JW (2010) What is an epileptic seizure? Unifying definitions in clinical practice and animal research to develop novel treatments. Epilepsy Curr 10:61–66

    Article  PubMed Central  PubMed  Google Scholar 

  27. Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C (1998) Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 55:27–57

    Article  CAS  PubMed  Google Scholar 

  28. de Curtis M, Avanzini G (2001) Interictal spikes in focal epileptogenesis. Prog Neurobiol 63:541–567

    Article  PubMed  Google Scholar 

  29. de Curtis M, Gnatkovsky V (2009) Reevaluating the mechanisms of focal ictogenesis: the role of low-voltage fast activity. Epilepsia 50:2514–2525

    Article  PubMed  Google Scholar 

  30. Derchansky M, Jahromi SS, Mamani M, Shin DS, Sik A, Carlen PL (2008) Transition to seizures in the isolated immature mouse hippocampus: a switch from dominant phasic inhibition to dominant phasic excitation. J Physiol 586:477–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Devinsky O, Kelley K, Porter RJ, Theodore WH (1988) Clinical and electroencephalographic features of simple partial seizures. Neurology 38:1347–1352

    Article  CAS  PubMed  Google Scholar 

  32. Engel J, Bragin A, Staba R, Mody I (2009) High-frequency oscillations: what is normal and what is not? Epilepsia 50:598–604

    Article  PubMed  Google Scholar 

  33. Engel J Jr (1984) A practical guide for routine EEG studies in epilepsy. J Clin Neurophysiol 1:109–142

    Article  PubMed  Google Scholar 

  34. Engel JJ (1989) Seizures and epilepsy. F. A. Davis, Philadelphia

    Google Scholar 

  35. Fariello RG, Doro JM, Forster FM (1979) Generalized cortical electrodecremental event. Clinical and neurophysiological observations in patients with dystonic seizures. Arch Neurol 36:285–291

    Article  CAS  PubMed  Google Scholar 

  36. Fisher RS, Engel JJ Jr (2010) Definition of the postictal state: when does it start and end? Epilepsy Behav 19:100–104

    Article  PubMed  Google Scholar 

  37. Fisher RS, van Emde BW, Blume W, Elger C, Genton P, Lee P, Engel J Jr (2005) Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE). Epilepsia 46:470–472

    Article  PubMed  Google Scholar 

  38. Fisher RS, Webber WR, Lesser RP, Arroyo S, Uematsu S (1992) High-frequency EEG activity at the start of seizures. J Clin Neurophysiol 9:441–448

    Article  CAS  PubMed  Google Scholar 

  39. Fujiwara-Tsukamoto Y, Isomura Y, Imanishi M, Ninomiya T, Tsukada M, Yanagawa Y, Fukai T, Takada M (2010) Prototypic seizure activity driven by mature hippocampal fast-spiking interneurons. J Neurosci 30:13679–13689

    Article  PubMed  Google Scholar 

  40. Fujiwara-Tsukamoto Y, Isomura Y, Kaneda K, Takada M (2004) Synaptic interactions between pyramidal cells and interneurone subtypes during seizure-like activity in the rat hippocampus. J Physiol 557:961–979

    Article  PubMed Central  PubMed  Google Scholar 

  41. Fujiwara H, Greiner HM, Lee KH, Holland-Bouley KD, Seo JH, Arthur T, Mangano FT, Leach JL, Rose DF (2012) Resection of ictal high-frequency oscillations leads to favorable surgical outcome in pediatric epilepsy. Epilepsia 53:1607–1617

    Article  PubMed Central  PubMed  Google Scholar 

  42. Gale K (1992) Subcortical structures and pathways involved in convulsive seizure generation. J Clin Neurophysiol 9:264–277

    Article  CAS  PubMed  Google Scholar 

  43. Gloor P (1975) Contributions of electroencephalography and electrocorticography to the neurosurgical treatment of the epilepsies. In: Purpura DP, Penry JK, Walter RD (eds) Advances in neurology. Raven, New York, pp 59–105

    Google Scholar 

  44. Gnatkovsky V, Librizzi L, Trombin F, de Curtis M (2008) Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro. Ann Neurol 64:674–686

    Article  PubMed  Google Scholar 

  45. Gnatkovsky V, Pastori C, Cardinale F, Lo Russo G, Mai R, Nobili L, Sartori I, Tassi L, Francione S, de Curtis M (2014) Biomarkers of epileptogenic zone defined by quantified stereo-EEG analysis. Epilepsia 55(2):296–305

    Article  PubMed  Google Scholar 

  46. Goffin K, Nissinen J, Van Laere K, Pitkanen A (2007) Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Exp Neurol 205:501–505

    Article  CAS  PubMed  Google Scholar 

  47. Gonzalez-Martinez J, Bulacio J, Alexopoulos A, Jehi L, Bingaman W, Najm I (2013) Stereoelectroencephalography in the “difficult to localize” refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia 54:323–330

    Article  PubMed  Google Scholar 

  48. Gotman J, Levtova V, Olivier A (1995) Frequency of the electroencephalographic discharge in seizures of focal and widespread onset in intracerebral recordings. Epilepsia 36:697–703

    Article  CAS  PubMed  Google Scholar 

  49. Gralewicz S, Wiaderna D, Stetkiewicz J, Tomas T (2000) Spontaneous spike-wave discharges in rat neocortex and their relation to behaviour. Acta Neeurobiol Exp (Wars) 60:323–332

    Google Scholar 

  50. Green JD, Arduini AA (1954) Hippocampal electrical activity in arousal. J Neurophysiol 17:533–557

    CAS  PubMed  Google Scholar 

  51. Guerrini R, Dravet C, Raybaud C, Roger J, Bureau M, Battaglia A, Livet MO, Gambarelli D, Robain O (1992) Epilepsy and focal gyral anomalies detected by MRI: electroclinico-morphological correlations and follow-up. Dev Med Child Neurol 34:706–718

    Article  CAS  PubMed  Google Scholar 

  52. Hasselmo ME (2005) What is the function of hippocampal theta rhythm? – linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus 15:936–949

    Article  PubMed  Google Scholar 

  53. Hauser WA, Hesdorffer DC (1990) Epilepsy: frequency, causes and consequences. Demos Medical, New York

    Google Scholar 

  54. Holmes GL, Lenck-Santini PP (2006) Role of interictal epileptiform abnormalities in cognitive impairment. Epilepsy Behav 8:504–515

    Article  PubMed  Google Scholar 

  55. Hopkins A, Shorvon S, Cascino GD (1995) Epilepsy. Chapman & Hall, London

    Google Scholar 

  56. Huberfeld G, Menendez de la Prida L, Pallud J, Cohen I, Le Van Quyen M, Adam C, Clemenceau S, Baulac M, Miles R (2011) Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nat Neurosci 14:627–634

    Article  CAS  PubMed  Google Scholar 

  57. Ikeda A, Taki W, Kunieda T, Terada K, Mikuni N, Nagamine T, Yazawa S, Ohara S, Hori T, Kaji R, Kimura J, Shibasaki H (1999) Focal ictal direct current shifts in human epilepsy as studied by subdural and scalp recording. Brain 122(Pt 5):827–838

    Article  PubMed  Google Scholar 

  58. Jackson JH (1870) A study of convulsions. Trans St Andrews Med Grad Assoc 3:162–204

    Google Scholar 

  59. Jiruska P, de Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol 591:787–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Jones RS, Lambert JD (1990) The role of excitatory amino acid receptors in the propagation of epileptiform discharges from the entorhinal cortex to the dentate gyrus in vitro. Exp Brain Res 80:310–322

    Article  CAS  PubMed  Google Scholar 

  61. Kadam SD, White AM, Staley KJ, Dudek FE (2010) Continuous electroencephalographic monitoring with radio-telemetry in a rat model of perinatal hypoxia-ischemia reveals progressive post-stroke epilepsy. J Neurosci 30:404–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Kaplan PW, Fisher RS (2005) Imitators of epilepsy. Demos Publishing, New York

    Google Scholar 

  63. Kelly KM, Shiau DS, Jukkola PI, Miller ER, Mercadante AL, Quigley MM, Nair SP, Sackellares JC (2011) Effects of age and cortical infarction on EEG dynamic changes associated with spike wave discharges in F344 rats. Exp Neurol 232:15–21

    Article  PubMed Central  PubMed  Google Scholar 

  64. Khalilov I, Dzhala V, Medina I, Leinekugel X, Melyan Z, Lamsa K, Khazipov R, Ben-Ari Y (1999) Maturation of kainate-induced epileptiform activities in interconnected intact neonatal limbic structures in vitro. Eur J Neurosci 11:3468–3480

    Article  CAS  PubMed  Google Scholar 

  65. Kharatishvili I, Nissinen JP, McIntosh TK, Pitkanen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 140:685–697

    Article  CAS  PubMed  Google Scholar 

  66. Kharatishvili I, Pitkanen A (2010) Association of the severity of cortical damage with the occurrence of spontaneous seizures and hyperexcitability in an animal model of posttraumatic epilepsy. Epilepsy Res 90:47–59

    Article  PubMed  Google Scholar 

  67. Lopantsev V, Avoli M (1998) Laminar organization of epileptiform discharges in the rat entorhinal cortex in vitro. J Physiol 509(Pt 3):785–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Manabe H, Kusumoto-Yoshida I, Ota M, Mori K (2011) Olfactory cortex generates synchronized top-down inputs to the olfactory bulb during slow-wave sleep. J Neurosci 31:8123–8133

    Article  CAS  PubMed  Google Scholar 

  69. Miller JW, Turner GM, Gray BC (1994) Anticonvulsant effects of the experimental induction of hippocampal theta activity. Epilepsy Res 18:195–204

    Article  CAS  PubMed  Google Scholar 

  70. Mohamed AR, Bailey CA, Freeman JL, Maixner W, Jackson GD, Harvey AS (2012) Intrinsic epileptogenicity of cortical tubers revealed by intracranial EEG monitoring. Neurology 79:2249–2257

    Article  PubMed  Google Scholar 

  71. Nair SP, Jukkola PI, Quigley M, Wilberger A, Shiau DS, Sackellares JC, Pardalos PM, Kelly KM (2008) Absence seizures as resetting mechanisms of brain dynamics. Cybern Syst Anal 44:664–672

    Article  PubMed Central  PubMed  Google Scholar 

  72. Nicolelis MA, Fanselow EE (2002) Dynamic shifting in thalamocortical processing during different behavioural states. Philos Trans R Soc Lond B Biol Sci 357:1753–1758

    Article  PubMed Central  PubMed  Google Scholar 

  73. Noachtar S, Peters AS (2009) Semiology of epileptic seizures: a critical review. Epilepsy Behav 15:2–9

    Article  PubMed  Google Scholar 

  74. Noebels J (2006) Spontaneous epileptic mutations in the mouse. In: Pitkanen A, Moshe SL, Schwartkzroin PA (eds) Models of seizures and epilepsy. Elsevier, London, pp 222–233

    Google Scholar 

  75. Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. J. & A. Churchill, Ltd., London

    Google Scholar 

  76. Pohlmann-Eden B, Hoch DB, Cochius JI, Chiappa KH (1996) Periodic lateralized epileptiform discharges – a critical review. J Clin Neurophysiol 13:519–530

    Article  CAS  PubMed  Google Scholar 

  77. Porter RJ, Penry JK (1973) Responsiveness at the onset of spike-wave bursts. Electroencephalogr Clin Neurophysiol 34:239–245

    Article  CAS  PubMed  Google Scholar 

  78. Racine RJ (1972) Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  79. Ramantani G, Koessler L, Colnat-Coulbois S, Vignal JP, Isnard J, Catenoix H, Jonas J, Zentner J, Schulze-Bonhage A, Maillard LG (2013) Intracranial evaluation of the epileptogenic zone in regional infrasylvian polymicrogyria. Epilepsia 54:296–304

    Article  PubMed  Google Scholar 

  80. Riban V, Bouilleret V, Pham-Le BT, Fritschy JM, Marescaux C, Depaulis A (2002) Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 112:101–111

    Article  CAS  PubMed  Google Scholar 

  81. Scantlebury MH, Galanopoulou AS, Chudomelova L, Raffo E, Betancourth D, Moshe SL (2010) A model of symptomatic infantile spasms syndrome. Neurobiol Dis 37:604–612

    Article  PubMed Central  PubMed  Google Scholar 

  82. Schindler K, Leung H, Elger CE, Lehnertz K (2007) Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 130:65–77

    Article  PubMed  Google Scholar 

  83. Shaw FZ (2004) Is spontaneous high-voltage rhythmic spike discharge in Long Evans rats an absence-like seizure activity? J Neurophysiol 91:63–77

    Article  PubMed  Google Scholar 

  84. Sirota A, Buzsaki G (2005) Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus Relat Syst 3:245–259

    Article  PubMed Central  PubMed  Google Scholar 

  85. Talairach J, Bancaud J, Szikla G, Bonis A, Geier S, Vedrenne C (1974) New approach to the neurosurgery of epilepsy. Stereotaxic methodology and therapeutic results. 1. Introduction and history. Neurochirurgie 20(Suppl 1):1–240

    PubMed  Google Scholar 

  86. Tort AB, Fontanini A, Kramer MA, Jones-Lush LM, Kopell NJ, Katz DB (2010) Cortical networks produce three distinct 7–12 hz rhythms during single sensory responses in the awake rat. J Neurosci 30:4315–4324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Trenite DG (2006) Photosensitivity, visually sensitive seizures and epilepsies. Epilepsy Res 70(Suppl 1):S269–S279

    Article  PubMed  Google Scholar 

  88. Trombin F, Gnatkovsky V, de Curtis M (2011) Changes in action potential features during focal seizure discharges in the entorhinal cortex of the in vitro isolated guinea pig brain. J Neurophysiol 106:1411–1423

    Article  CAS  PubMed  Google Scholar 

  89. Uva L, de Curtis M (2005) Polysynaptic olfactory pathway to the ipsi- and contralateral entorhinal cortex mediated via the hippocampus. Neuroscience 130:249–258

    Article  CAS  PubMed  Google Scholar 

  90. Vadera S, Mullin J, Bulacio J, Najm I, Bingaman W, Gonzalez-Martinez J (2013) Stereoelectroencephalography following subdural grid placement for difficult to localize epilepsy. Neurosurgery 72:723–729

    Article  PubMed  Google Scholar 

  91. Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26:407–418

    Article  CAS  PubMed  Google Scholar 

  92. Vanhatalo S, Holmes MD, Tallgren P, Voipio J, Kaila K, Miller JW (2003) Very slow EEG responses lateralize temporal lobe seizures: an evaluation of non-invasive DC-EEG. Neurology 60:1098–1104

    Article  CAS  PubMed  Google Scholar 

  93. Wendling F, Bartolomei F, Bellanger JJ, Bourien J, Chauvel P (2003) Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain 126:1449–1459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Wiest MC, Nicolelis MA (2003) Behavioral detection of tactile stimuli during 7–12 hz cortical oscillations in awake rats. Nat Neurosci 6:913–914

    Article  CAS  PubMed  Google Scholar 

  95. Williams PA, White AM, Clark S, Ferraro DJ, Swiercz W, Staley KJ, Dudek FE (2009) Development of spontaneous recurrent seizures after kainate-induced status epilepticus. J Neurosci 29:2103–2112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Willoughby JO, Mackenzie L (1992) Nonconvulsive electrocorticographic paroxysms (absence epilepsy) in rat strains. Lab Anim Sci 42:551–554

    CAS  PubMed  Google Scholar 

  97. Wilson DA, Yan X (2010) Sleep-like states modulate functional connectivity in the rat olfactory system. J Neurophysiol 104:3231–3239

    Article  PubMed Central  PubMed  Google Scholar 

  98. Worrell GA, Gardner AB, Stead SM, Hu S, Goerss S, Cascino GJ, Meyer FB, Marsh R, Litt B (2008) High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain 131:928–937

    Article  PubMed Central  PubMed  Google Scholar 

  99. Ziburkus J, Cressman JR, Barreto E, Schiff SJ (2006) Interneuron and pyramidal cell interplay during in vitro seizure-like events. J Neurophysiol 95:3948–3954

    Article  PubMed Central  PubMed  Google Scholar 

  100. Zijlmans M, Jacobs J, Zelmann R, Dubeau F, Gotman J (2009) High-frequency oscillations mirror disease activity in patients with epilepsy. Neurology 72:979–986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Pearce PS, Friedman D, Lafrancois JJ, Iyengar SS, Fenton AA, Maclusky NJ, Scharfman HE (2014) Spike-wave discharges in adult Sprague–Dawley rats and their implications for animal models of temporal lobe epilepsy. Epilepsy Behav 32:121–131

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

RSF: I first met Phil at Stanford in the early 1970’s, when he brought the hippocampal slice recording technique to the US. Since then, he has been a pioneer and thought leader in so many ways, and a mentor to generations of epilepsy researchers.

MdC: Phil has been a valued colleague and leader in epilepsy research both in the US and internationally.

HES: The three years I spent in Seattle under Phil’s mentorship were some of the most memorable, and important. Long after I left Seattle, his insights and approach to epilepsy research continued to influence my research, and the work of those in my own laboratory.

Other Acknowledgements Section 1.1 was written by RF, Sects. 1.2, 1.3 by MdC and Sect. 1.4 by HES. Supported by The James and Carrie Anderson Fund for Epilepsy Research, The Susan Horngen fund (RF); NIH R01 NS-037562, R01 NS-070173, R21 MH-090606, the Alzheimer’s Association, and the New York State Department of Health (HES); Italian Health Ministry grants RC 2011–2013; RF114-2007 and RF151-2010 (MdC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fisher, R.S., Scharfman, H.E., deCurtis, M. (2014). How Can We Identify Ictal and Interictal Abnormal Activity?. In: Scharfman, H., Buckmaster, P. (eds) Issues in Clinical Epileptology: A View from the Bench. Advances in Experimental Medicine and Biology, vol 813. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8914-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8914-1_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8913-4

  • Online ISBN: 978-94-017-8914-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics