Skip to main content

Slow Inactivation of Na+ Channels

  • Chapter
  • First Online:
Book cover Voltage Gated Sodium Channels

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 221))

Abstract

Prolonged depolarizing pulses that last seconds to minutes cause slow inactivation of Na+ channels, which regulates neuron and myocyte excitability by reducing availability of inward current. In neurons, slow inactivation has been linked to memory of previous excitation and in skeletal muscle it ensures myocytes are able to contract when K+ is elevated. The molecular mechanisms underlying slow inactivation are unclear even though it has been studied for 50+ years. This chapter reviews what is known to date regarding the definition, measurement, and mechanisms of voltage-gated Na+ channel slow inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelman WJ Jr, Palti Y (1969) The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei. J Gen Physiol 54(5):589–606

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Armstrong CM, Bezanilla F, Rojas E (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 62(4):375–391

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balser JR et al (1996a) Local anesthetics as effectors of allosteric gating. Lidocaine effects on inactivation-deficient rat skeletal muscle Na channels. J Clin Invest 98(12):2874–2886

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balser JR et al (1996b) External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels. J Physiol 494(Pt 2):431–442

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bendahhou S et al (2002) Impairment of slow inactivation as a common mechanism for periodic paralysis in DIIS4-S5. Neurology 58(8):1266–1272

    Article  PubMed  CAS  Google Scholar 

  • Bezanilla F, Taylor RE, Fernandez JM (1982) Distribution and kinetics of membrane dielectric polarization. 1. Long-term inactivation of gating currents. J Gen Physiol 79(1):21–40

    Article  PubMed  CAS  Google Scholar 

  • Brancati F et al (2003) Severe infantile hyperkalaemic periodic paralysis and paramyotonia congenita: broadening the clinical spectrum associated with the T704M mutation in SCN4A. J Neurol Neurosurg Psychiatry 74(9):1339–1341

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Capes DL et al (2012) Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor. Proc Natl Acad Sci U S A 109(7):2648–2653

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cha A et al (1999) Voltage sensors in domains III and IV, but not I and II, are immobilized by Na + channel fast inactivation. Neuron 22(1):73–87

    Article  PubMed  CAS  Google Scholar 

  • Chanda B, Bezanilla F (2002) Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J Gen Physiol 120(5):629–645

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chandler WK, Meves H (1970a) Slow changes in membrane permeability and long-lasting action potentials in axons perfused with fluoride solutions. J Physiol 211(3):707–728

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chandler WK, Meves H (1970b) Rate constants associated with changes in sodium conductance in axons perfused with sodium fluoride. J Physiol 211(3):679–705

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chandler WK, Meves H (1970c) Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J Physiol 211(3):653–678

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chandler WK, Meves H (1970d) Sodium and potassium currents in squid axons perfused with fluoride solutions. J Physiol 211(3):623–652

    PubMed Central  PubMed  CAS  Google Scholar 

  • Choi KL, Aldrich RW, Yellen G (1991) Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K + channels. Proc Natl Acad Sci U S A 88(12):5092–5095

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cormier JW et al (2002) Secondary structure of the human cardiac Na + channel C terminus: evidence for a role of helical structures in modulation of channel inactivation. J Biol Chem 277(11):9233–9241

    Article  PubMed  CAS  Google Scholar 

  • Cuello LG et al (2010) Structural mechanism of C-type inactivation in K(+) channels. Nature 466(7303):203–208

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cummins TR, Sigworth FJ (1996) Impaired slow inactivation in mutant sodium channels. Biophys J 71(1):227–236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Featherstone DE, Richmond JE, Ruben PC (1996) Interaction between fast and slow inactivation in Skm1 sodium channels. Biophys J 71(6):3098–3109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fozzard HA, Hanck DA (1996) Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev 76(3):887–926

    PubMed  CAS  Google Scholar 

  • Fozzard HA, Lipkind GM (2010) The tetrodotoxin binding site is within the outer vestibule of the sodium channel. Mar Drugs 8(2):219–234

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gellens ME et al (1992) Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A 89(2):554–558

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • George AL Jr (2005) Inherited disorders of voltage-gated sodium channels. J Clin Invest 115(8):1990–1999

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goldin AL (2003) Mechanisms of sodium channel inactivation. Curr Opin Neurobiol 13(3):284–290

    Article  PubMed  CAS  Google Scholar 

  • Hayward LJ, Sandoval GM, Cannon SC (1999) Defective slow inactivation of sodium channels contributes to familial periodic paralysis. Neurology 52(7):1447–1453

    Article  PubMed  CAS  Google Scholar 

  • Hilber K et al (2002) Interaction between fast and ultra-slow inactivation in the voltage-gated sodium channel. Does the inactivation gate stabilize the channel structure? J Biol Chem 277(40):37105–37115

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116(4):497–506

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hoshi T, Zagotta WN, Aldrich RW (1991) Two types of inactivation in Shaker K + channels: effects of alterations in the carboxy-terminal region. Neuron 7(4):547–556

    Article  PubMed  CAS  Google Scholar 

  • Isom LL et al (1992) Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science 256(5058):839–842

    Article  PubMed  CAS  Google Scholar 

  • Ji S et al (1994) Voltage-dependent regulation of modal gating in the rat SkM1 sodium channel expressed in Xenopus oocytes. J Gen Physiol 104(4):625–643

    Article  PubMed  CAS  Google Scholar 

  • Jurkat-Rott K, Lehmann-Horn F (2006) Paroxysmal muscle weakness: the familial periodic paralyses. J Neurol 253(11):1391–1398

    Article  PubMed  CAS  Google Scholar 

  • Jurkat-Rott K et al (2009) K + -dependent paradoxical membrane depolarization and Na + overload, major and reversible contributors to weakness by ion channel leaks. Proc Natl Acad Sci U S A 106(10):4036–4041

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kambouris NG et al (1998) Mechanistic link between lidocaine block and inactivation probed by outer pore mutations in the rat micro1 skeletal muscle sodium channel. J Physiol 512(Pt 3):693–705

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kiss L, Korn SJ (1998) Modulation of C-type inactivation by K + at the potassium channel selectivity filter. Biophys J 74(4):1840–1849

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kiss L, LoTurco J, Korn SJ (1999) Contribution of the selectivity filter to inactivation in potassium channels. Biophys J 76(1 Pt 1):253–263

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kontis KJ, Goldin AL (1997) Sodium channel inactivation is altered by substitution of voltage sensor positive charges. J Gen Physiol 110(4):403–413

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lengele JP, Belge H, Devuyst O (2008) Periodic paralyses: when channels go wrong. Nephrol Dial Transplant 23(4):1098–1101

    Article  PubMed  Google Scholar 

  • Mantegazza M et al (2001) Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proc Natl Acad Sci U S A 98(26):15348–15353

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marom S (2010) Neural timescales or lack thereof. Prog Neurobiol 90(1):16–28

    Article  PubMed  Google Scholar 

  • McCollum IJ et al (2003) Negatively charged residues adjacent to IFM motif in the DIII-DIV linker of hNa(V)1.4 differentially affect slow inactivation. FEBS Lett 552(2–3):163–169

    Article  PubMed  CAS  Google Scholar 

  • McCusker EC et al (2012) Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3:1102

    Article  PubMed Central  PubMed  Google Scholar 

  • Melamed-Frank M, Marom S (1999) A global defect in scaling relationship between electrical activity and availability of muscle sodium channels in hyperkalemic periodic paralysis. Pflugers Arch 438(2):213–217

    Article  PubMed  CAS  Google Scholar 

  • Mitrovic N, George AL Jr, Horn R (2000) Role of domain 4 in sodium channel slow inactivation. J Gen Physiol 115(6):707–718

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Narahashi T (1964) Restoration of action potential by anodal polarization in lobster giant axons. J Cell Physiol 64:73–96

    Article  CAS  Google Scholar 

  • Noda M et al (1986a) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320(6058):188–192

    Article  PubMed  CAS  Google Scholar 

  • Noda M et al (1986b) Expression of functional sodium channels from cloned cDNA. Nature 322(6082):826–828

    Article  PubMed  CAS  Google Scholar 

  • Ong BH, Tomaselli GF, Balser JR (2000) A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J Gen Physiol 116(5):653–662

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • O’Reilly JP et al (1999) Comparison of slow inactivation in human heart and rat skeletal muscle Na + channel chimaeras. J Physiol 515(Pt 1):61–73

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Reilly JP, Wang SY, Wang GK (2001) Residue-specific effects on slow inactivation at V787 in D2-S6 of Na(v)1.4 sodium channels. Biophys J 81(4):2100–2111

    Article  PubMed Central  PubMed  Google Scholar 

  • Payandeh J et al (2011) The crystal structure of a voltage-gated sodium channel. Nature 475(7356):353–358

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Payandeh J et al (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486(7401):135–139

    PubMed Central  PubMed  CAS  Google Scholar 

  • Richmond JE et al (1998) Slow inactivation in human cardiac sodium channels. Biophys J 74(6):2945–2952

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rojas E, Rudy B (1976) Destruction of the sodium conductance inactivation by a specific protease in perfused nerve fibres from Loligo. J Physiol 262(2):501–531

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ruben PC, Starkus JG, Rayner MD (1992) Steady-state availability of sodium channels. Interactions between activation and slow inactivation. Biophys J 61(4):941–955

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rudy B (1975) Proceedings: slow recovery of the inactivation of sodium conductance in myxicola giant axons. J Physiol 249(1):22P–24P

    PubMed  CAS  Google Scholar 

  • Rudy B (1978) Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance J Physiol 283:1–21

    CAS  Google Scholar 

  • Rudy B (1981) Inactivation in myxicola giant axons responsible for slow and accumulative adaptation phenomena. J Physiol 312:531–549

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ruff RL, Simoncini L, Stuhmer W (1987) Comparison between slow sodium channel inactivation in rat slow- and fast-twitch muscle. J Physiol 383:339–348

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ruff RL, Simoncini L, Stuhmer W (1988) Slow sodium channel inactivation in mammalian muscle: a possible role in regulating excitability. Muscle Nerve 11(5):502–510

    Article  PubMed  CAS  Google Scholar 

  • Sandtner W et al (2004) Lidocaine: a foot in the door of the inner vestibule prevents ultra-slow inactivation of a voltage-gated sodium channel. Mol Pharmacol 66(3):648–657

    PubMed  CAS  Google Scholar 

  • Schauf CL (1987) Zonisamide enhances slow sodium inactivation in Myxicola. Brain Res 413(1):185–188

    Article  PubMed  CAS  Google Scholar 

  • Schauf CL, Pencek TL, Davis FA (1976) Slow sodium inactivation in Myxicola axons. Evidence for a second inactive state. Biophys J 16(7):771–778

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shaw RM, Rudy Y (1997) Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ Res 81(5):727–741

    Article  PubMed  CAS  Google Scholar 

  • Sheets MF et al (2010) Sodium channel molecular conformations and antiarrhythmic drug affinity. Trends Cardiovasc Med 20(1):16–21

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Silva JR, Goldstein SA (2013a) Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: wild-type skeletal muscle Na(V)1.4. J Gen Physiol 141(3):309–321

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Silva JR, Goldstein SA (2013b) Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: a periodic paralysis mutation in Na(V)1.4 (L689I). J Gen Physiol 141(3):323–334

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smith MR, Goldin AL (1997) Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys J 73(4):1885–1895

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Song W et al (2011) Analysis of the action of lidocaine on insect sodium channels. Insect Biochem Mol Biol 41(1):36–41

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Soudry D, Meir R (2010) History-dependent dynamics in a generic model of ion channels—an analytic study. Front Comput Neurosci 4. pii: 3. doi:10.3389/fncom.2010.00003. http://www.ncbi.nlm.nih.gov/pubmed/20725633

  • Szendroedi J et al (2007) Speeding the recovery from ultraslow inactivation of voltage-gated Na + channels by metal ion binding to the selectivity filter: a foot-on-the-door? Biophys J 93(12):4209–4224

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tanabe T et al (1984) Primary structure of beta subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur J Biochem 144(1):11–17

    Article  PubMed  CAS  Google Scholar 

  • Tateyama M et al (2004) Structural effects of an LQT-3 mutation on heart Na + channel gating. Biophys J 86(3):1843–1851

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Toib A, Lyakhov V, Marom S (1998) Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na + channels. J Neurosci 18(5):1893–1903

    PubMed  CAS  Google Scholar 

  • Townsend C, Horn R (1997) Effect of alkali metal cations on slow inactivation of cardiac Na + channels. J Gen Physiol 110(1):23–33

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Trimmer JS et al (1989) Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3(1):33–49

    Article  PubMed  CAS  Google Scholar 

  • Vedantham V, Cannon SC (1998) Slow inactivation does not affect movement of the fast inactivation gate in voltage-gated Na + channels. J Gen Physiol 111(1):83–93

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vedantham V, Cannon SC (2000) Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na(+) channels. Biophys J 78(6):2943–2958

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vilin YY, Ruben PC (2001) Slow inactivation in voltage-gated sodium channels: molecular substrates and contributions to channelopathies. Cell Biochem Biophys 35(2):171–190

    Article  PubMed  CAS  Google Scholar 

  • Vilin YY et al (1999) Structural determinants of slow inactivation in human cardiac and skeletal muscle sodium channels. Biophys J 77(3):1384–1393

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vilin YY, Fujimoto E, Ruben PC (2001a) A novel mechanism associated with idiopathic ventricular fibrillation (IVF) mutations R1232W and T1620M in human cardiac sodium channels. Pflugers Arch 442(2):204–211

    Article  PubMed  CAS  Google Scholar 

  • Vilin YY, Fujimoto E, Ruben PC (2001b) A single residue differentiates between human cardiac and skeletal muscle Na + channel slow inactivation. Biophys J 80(5):2221–2230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Webb J, Cannon SC (2008) Cold-induced defects of sodium channel gating in atypical periodic paralysis plus myotonia. Neurology 70(10):755–761

    Article  PubMed  CAS  Google Scholar 

  • Webb J, Wu FF, Cannon SC (2009) Slow inactivation of the NaV1.4 sodium channel in mammalian cells is impeded by co-expression of the beta1 subunit. Pflugers Arch 457(6):1253–1263

    Article  PubMed  CAS  Google Scholar 

  • Weidmann S (1955) The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol 127(1):213–224

    PubMed Central  PubMed  CAS  Google Scholar 

  • West JW et al (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A 89(22):10910–10914

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Woronzow DS (1924) Über die Einwirkung des konstanten Stromes auf den mit Wasser, Zuckerlösung, Alkali- und Erdalkalichloridlösungen behandelten Nerven. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 203(1):300–318

    Article  CAS  Google Scholar 

  • Xiong W et al (2003) Molecular motions of the outer ring of charge of the sodium channel: do they couple to slow inactivation? J Gen Physiol 122(3):323–332

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang X et al (2012) Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486(7401):130–134

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Silva, J. (2014). Slow Inactivation of Na+ Channels. In: Ruben, P. (eds) Voltage Gated Sodium Channels. Handbook of Experimental Pharmacology, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41588-3_3

Download citation

Publish with us

Policies and ethics