Skip to main content

Toxins Affecting Actin Filaments and Microtubules

  • Chapter
Book cover Marine Toxins as Research Tools

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 46))

Abstract

Actin and tubulin are the two major proteins of the cytoskeleton in eukaryotic cells and both display a common property to reversibly assemble into long and flexible polymers, actin filaments and microtubules, respectively. These proteins play important roles in a variety of cellular functions and are also involved in numbers of diseases. An emerging number of marine-derived cytotoxins have been found to bind either actin or tublin, resulting in either inhibition or enhancement of polymerization. Thus, these toxins are valuable molecular probes for solving complex mechanisms of biological processes. This chapter describes actin- and tubulin-targeting marine natural products and their modes of action, with reference to their use as research tools and their clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allingham JS, Zampella A, D'Auria M V, Rayment I (2005) Structures of microfilament destabilizing toxins bound to actin provide insight into toxin design and activity. Proc Natl Acad Sci USA 102:14527–14532.

    CAS  Google Scholar 

  • Allingham JS, Klenchin VA, Rayment I (2006) Actin-targeting natural products: structures, properties and mechanisms of action. Cell Mol Life Sci 63:2119–2134.

    CAS  Google Scholar 

  • Allingham JS, Miles CO, Rayment I (2007) A structural basis for regulation of actin polymerization by pectenotoxins. J Mol Biol 371:959–970.

    CAS  Google Scholar 

  • Bai R, Pettit GR, Hamel E (1990) Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem Pharmacol 39:1941–1949.

    CAS  Google Scholar 

  • Bai R, Paull KD, Herald CL, Malspeis L, Pettit GR, Hamel E (1991) Halichondrin B and homo-halichondrin B, marine natural products binding in the vinca domain of tubulin: discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem 266:15882–15889.

    CAS  Google Scholar 

  • Bai R, Friedman SJ, Pettit GR, Hamel E (1992) Dolastatin 15, a potent antimitotic depsipeptide derived from Dolabella auricularia: interaction with tubulin and effects on cellular microtubules. Biochem Pharmacol 43:2637–2645.

    CAS  Google Scholar 

  • Bai R, Cichacz ZA, Herald CL, Pettit GR, Hamel E (1993) Spongistatin 1, a highly cytotoxic, sponge-derived, marine natural product that inhibits mitosis, microtubule assembly, and the binding of vinblastine to tubulin. Mol Pharmacol 44:757–766.

    CAS  Google Scholar 

  • Bai R, Taylor GF, Cichacz ZA, Herald CL, Kepler JA, Pettit GR, Hamel E (1995) The spongistatins, potently cytotoxic inhibitors of tubulin polymerization, bind in a distinct region of the vinca domain. Biochemistry 34:9714–9721.

    CAS  Google Scholar 

  • Bai R, Schwartz RE, Kepler JA, Pettit GR, Hamel E (1996) Characterization of the interaction of cryptophycin 1 with tubulin: Binding in the Vinca domain, competitive inhibition of dolastatin 10 binding, and an unusual aggregation reaction. Cancer Res 56:4398–4406.

    CAS  Google Scholar 

  • Bai R, Durso NA, Sackett DL, Hamel E (1999) Interactions of the sponge-derived antimitotic tripeptide hemiasterlin with tubulin: comparison with dolastatin 10 and cryptophycin 1. Biochemistry 38:14302–14310.

    CAS  Google Scholar 

  • Bai R, Verdier-Pinard P, Gangwar S, Stessman CC, McClure KJ, Sausville EA, Pettit GR, Bates RB, Hamel E (2001) Dolastatin 11, a marine depsipeptide, arrests cells at cytokinesis and induces hyperpolymerization of purified actin. Mol Pharmacol 59:462–469.

    CAS  Google Scholar 

  • Bai R, Covell DG, Liu C, Ghosh AK, Hamel E (2002) (-)-Doliculide, a new macrocyclic depsipeptide enhancer of actin assembly. J Biol Chem 277:32165–32171.

    CAS  Google Scholar 

  • Belmont LD, Patterson GML, Drubin DG (1999) New actin mutants allow further characterization of the nucleotide binding cleft and drub binding sites. J Cell Sci 112:1325–1336.

    CAS  Google Scholar 

  • Bergnes G, Brejc K, Belmont L (2005) Mitotic kinesins: prospects for antimitotic drug discovery. Curr Top Med Chem 5:127–145.

    CAS  Google Scholar 

  • Blokhin AV, Yoo H-D, Geralds RS, Nagle DG, Gerwick WH, Hamel E (1995) Characterization of the interaction of the marine cyanobacterial natural product curacin A with the colchicine site of tubulin and initial structure-activity studies with analogs. Mol Pharmacol 48:523–531.

    CAS  Google Scholar 

  • Bubb MR, Senderowicz AMJ, Sausville EA, Duncan KLK, Korn ED (1994) Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem 269:14869–14871.

    CAS  Google Scholar 

  • Bubb MR, Spector I, Bershadsky AD, Korn ED (1995) Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments. J Biol Chem 270: 3463–3466.

    CAS  Google Scholar 

  • Bubb MR, Spector I, Beyer BB, Fosen KM (2000) Effects of jasplakinolide on the kinetics of actin polymerization: an explanation for certain in vivo observations. J Biol Chem 275:5163–5170.

    CAS  Google Scholar 

  • Carbonelli S, Zampella A, Randazzo A, Debitus C, Gomez-Paloma L (1999) Sphinxolides E-G and reidispongiolide C: four new cytotoxic macrolides from the New Caledonian Lithistida sponges N. superstes and R. coerulea. Tetrahedron 55:14665–14674.

    CAS  Google Scholar 

  • Carmeli S, Kashman Y (1985) Structure of swinholide-a, a new macrolide from the marine sponge Theonella swinhoei. Tetrahedron Lett 26:511–514.

    Google Scholar 

  • Chevallier C, Richardson AD, Edler MC, Hamel E, Harper MK, Ireland CM (2003) A new cytotoxic and tubulin-interactive milnamide derivative from a marine sponge Cymbastela sp. Org Lett 5:3737–3739.

    CAS  Google Scholar 

  • Chik JK, Lindberg U, Schutt CE (1996) The structure of an open state of ß-actin at 2.65 Å resolution. J Mol Biol 263:607–623.

    CAS  Google Scholar 

  • Cooper JA (1987) Effects of cytochalasins and phalloidin on actin. J Cell Biol 105:1473–1478.

    CAS  Google Scholar 

  • Cooper JA (1991) The role of actin polymerization in cell motility. Annu Rev Physiol 53: 585–605.

    CAS  Google Scholar 

  • Corley DG, Herb R, Moore RE, Scheuer PJ, Paul VJ (1988) Laulimalides: new potent cytotoxic macrolides from a marine sponge and a nudibranch predator. J Org Chem 53:3644–3646.

    CAS  Google Scholar 

  • Coué M, Brenner SL, Spector I, Korn ED (1987) Inhibition of actin polymerization by latrunculin A. FEBS Lett 213:316–318.

    Google Scholar 

  • Crews P, Manes LV, Boehler M (1986) Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis SP. Tetrahedron Lett 27:2797–2800.

    CAS  Google Scholar 

  • Crews P, Farias JJ, Emrich R, Keifer PA (1994) Milnamide A, an unusual cytotoxic tripeptide from the marine sponge Auletta cf. constricta. J Org Chem 59:2932–2934.

    CAS  Google Scholar 

  • Cruz-Monserrate Z, Vervoort HC, Bai R, Newman DJ, Howell SB, Los G, Mullaney JT, Williams MD, Pettit GR, Fenical W, Hamel E (2003) Diazonamide A and a synthetic structural analog: disruptive effects on mitosis and cellular microtubules and analysis of their interactions with tubulin. Mol Pharmacol 63:1273–1280.

    CAS  Google Scholar 

  • D'Ambrosio M, Guerriero A, Pietra F (1987) Sarcodictyin A and sarcodictyin B, novel diterpenoidic alcohols esterified by (E)-N(1)-methylurocanic acid. Isolation from the Mediterranean stolonifer Sarcodictyon roseum. Helv Chim Acta 70:2019–2027.

    Google Scholar 

  • D'Auria MV, Gomez-Paloma L, Minale L, Zampella A, Verbist J-F, Roussakis C, Debitus C (1993) Three new potent cytotoxic macrolides closely related to sphinxolide from the New Caledonian sponge Neosiphonia superstes. Tetrahedron 49:8657–8664.

    Google Scholar 

  • D'Auria MV, Gomez-Paloma L, Minale L, Zampella A (1994) Reidispongiolide A and B, two new potent cytotoxic macrolides from the new caledonian sponge Reidispongia coerulea. Tetrahedron 50:4829–4834.

    Google Scholar 

  • Degnan BM, Hawkins CJ, Lavin MF, McCaffrey EJ, Parry DL, Watters DJ (1989) Novel cytotoxic compounds from the ascidian Lissoclinum bistratum. J Med Chem 32:1354–1359.

    CAS  Google Scholar 

  • Didry D, Carlier MF, Pantaloni D (1998) Synergy between actin depolymerizing factor/cofilin and profilin in increasing actin filament turnover. J Biol Chem 273:25602–25611.

    CAS  Google Scholar 

  • Dixon WE, Malden W (1908) Colchicine with special reference to its mode of action and effect on bone-marrow. J Physiol 37:50–76.

    CAS  Google Scholar 

  • Doi M, Ishida T, Kobayashi M, Kitagawa I (1991) Molecular conformation of swinholide A, a potent cytotoxic dimeric macrolide from the Okinawan marine sponge Theonella swinhoei: X-ray crystal structure of its diketone derivative. J Org Chem 56:3629–3632.

    CAS  Google Scholar 

  • Dominguez R (2004) Actin-binding proteins – a unifying hypothesis. Trend Biochem Sci 29: 572–578.

    CAS  Google Scholar 

  • Donehower RC, Rowinsky EK, Grochow LB, Longnecker SM, Ettinger DS (1987) Phase I trial of taxol in patients with advanced cancer. Cancer Treat Rep 71:1171–1177.

    CAS  Google Scholar 

  • Dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83: 433–473.

    CAS  Google Scholar 

  • Ebbinghaus S, Rubin E, Hersh E, Cranmer LD, Bonate PL, Fram RJ, Jekunen A, Weitman S, Hammond LA (2005) A phase I study of the dolastatin-15 analogue tasidotin (ILX651) administered intravenously daily for 5 consecutive days every 3 weeks in patients with advanced solid tumors. Clin Cancer Res 11:7807–78163.

    CAS  Google Scholar 

  • Edler MC, Fernandez AM, Lassota P, Ireland CM, Barrows LR (2002) Inhibition of tubulin polymerization by vitilevuamide, a bicyclic marine peptide, at a site distinct from colchicine, the vinca alkaloids, and dolastatin 10. Biochem Pharmacol 63:707–715.

    CAS  Google Scholar 

  • Estes JE, Selden LA, Gershman LC (1981) Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry 20:708–712.

    CAS  Google Scholar 

  • Fenteany G, Zhu S (2003) Small molecule inhibitor of actin dynamics and cell motility. Curr Top Med Chem 3:593–616.

    CAS  Google Scholar 

  • Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38:447–460.

    CAS  Google Scholar 

  • Fusetani N, Yasumuro K, Matsunaga S, Hashimoto K (1989) Mycalolides A-C, hybrid macrolides of ulapualides and halichondramide, from a sponge of the genus Mycale. Tetrahedron Lett 30:2809–2812.

    CAS  Google Scholar 

  • Fusetani N, Shinoda K, Matsunaga S (1993) Bioactive marine metabolites. 48. Cinachyrolide A: a potent cytotoxic macrolide possessing two spiro ketals from marine sponge Cinachyra sp. J Am Chem Soc 115:3977–3981.

    CAS  Google Scholar 

  • Gaitanos TN, Buey RM, Diaz JF, Northcote PT, Teesdale-Spittle P, Andreu JM, Miller JH (2004) Peloruside A does not bind to the taxoid site on ß-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res 64:5063–5067.

    CAS  Google Scholar 

  • Gamble WR, Durso NA, Fuller RW, Westergaard CK, Johnson TR, Sackett DL, Hamel E, Cardellina JH II, Boyd MR (1999) Cytotoxic and tubulin-interactive hemiasterlins from Auletta sp. and Siphonochalina spp. sponges. Bioorg Med Chem 7:1611–1615.

    CAS  Google Scholar 

  • Gerwick WH, Proteau PJ, Nagle DG, Hamel E, Blokhin A, Slate DL (1994) Structure of curacin A, a novel antimitotic, antiproliferative, and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59:1243–1245.

    CAS  Google Scholar 

  • Gigant B, Wang C, Ravelli RBG, Roussi F, Steinmetz MO, Curmi PA, Sobel A, Knossow M (2005) Structural basis for the regulation of tubulin by vinblastine. Nature 435:519–522.

    CAS  Google Scholar 

  • Gouiffes D, Juge M, Grimaud N, Welin L, Sauviat MP, Barbin Y, Laurent D, Roussakis C, Henichart JP, Verbist JF (1988) Bistramide A, a new toxin from the urochordata Lissoclinum bistratum Sluiter: Isolation and preliminary characterization. Toxicon 26:1129–1136.

    CAS  Google Scholar 

  • Griffiths G, Garrone B, Deacon E, Owen P, Pongracz J, Mead G, Bradwell A, Watters D, Lord J (1996) The polyether bistratene A activates protein kinase C-δ and induces growth arrest in HL60 cells. Biochem Biophys Res Commun 222:802–808.

    CAS  Google Scholar 

  • Gunasekera SP, Gunasekera M, Longley RE, Schulte GK (1990) Discodermolide: A new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J Org Chem 55:4912–4915; correction (1991) J Org Chem 56:1346.

    CAS  Google Scholar 

  • Hamel E, Sackett DL, Vourloumis D, Nicolaou KC (1999) The coral-derived natural products eleutherobin and sarcodictyins A and B: effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding at the polymer taxoid site. Biochemistry 38:5490–5498.

    CAS  Google Scholar 

  • Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–63l.

    CAS  Google Scholar 

  • Hirata Y, Uemura D (1986) Halichondrins – antitumor polyether macrolides from a marine sponge. Pure Appl Chem 58:701–710.

    CAS  Google Scholar 

  • Hirata K, Muraoka S, Suenaga K, Kuroda T, Kato K, Tanaka H, Yamamoto M, Takata M, Yamada K, Kigoshi H (2006) Structure basis for antitumor effect of aplyronine A. J Mol Biol 356: 945–954.

    CAS  Google Scholar 

  • Hirokawa N, Takemura R (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp Cell Res 301:50–59.

    CAS  Google Scholar 

  • Hoffman MA, Blessing JA, Lentz SS (2003) A phase II trial of dolastatin-10 in recurrent platinum-sensitive ovarian carcinoma: a gynecologic oncology group study. Gynecol Oncol 89:95–98.

    CAS  Google Scholar 

  • Hood KA, West LM, Rouwe B, Northcote PT, Berridge MV, Wakefield St J, Miller JH (2002) Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule-stabilizing activity. Cancer Res 62:3356–3360.

    CAS  Google Scholar 

  • Hori M, Matsuura Y, Yoshimoto R, Ozaki H, Yasumoto T, Karaki H (1999) Actin depolymerizing action by marine toxin, pectenotoxin-2. Nippon Yakurigaku Zasshi 114 (Suppl 1): 225P–229P.

    Google Scholar 

  • Hung DT, Nerenberg JB, Schreiber SL (1994) Distinct binding and cellular properties of synthetic (+)- and (−)-discodermolides. Chem Biol 1:67–71.

    CAS  Google Scholar 

  • Hung DT, Chen J, Schreiber SL (1996) (+)-Discodermolide binds to microtubules in stoichiometric ratio to tubulin dimers, blocks taxol binding and results in mitotic arrest. Chem Biol 3: 287–293.

    CAS  Google Scholar 

  • Ibrado AM, Kim CN, Bhalla K (1998) Temporal relationship of CDK1 activation and mitotic arrest to cytosolic accumulation of cytochrome C and caspase-3 activity during Taxol-induced apoptosis of human AML HL-60 cells. Leukemia 12:1930–1936.

    CAS  Google Scholar 

  • Isbrucker RA, Cummins J, Pomponi SA, Longley RE, Wright AE (2003) Tubulin polymerizing activity of dictyostatin-1, a polyketide of marine sponge origin. Biochem Pharmacol 66: 75–82.

    CAS  Google Scholar 

  • Ishiwata H, Nemoto T, Ojika M, Yamada K (1994a) Isolation and stereostructure of doliculide, a cytotoxic cyclodepsipeptide from the Japanese sea hare Dolabella auricularia. J Org Chem 59:4710–4711.

    CAS  Google Scholar 

  • Ishiwata H, Sone H, Kigoshi H, Yamada K (1994b) Total synthesis of doliculide, a potent cyto-toxic cyclodepsipeptide from the Japanese sea hare Dolabella auricularia. J Org Chem 59:4712–4713.

    CAS  Google Scholar 

  • Jordan MA (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anti-Cancer Agents 2:1–17.

    CAS  Google Scholar 

  • Jung JH, Sim CJ, Lee C-O (1995) Cytotoxic compounds from a two-sponge association. J Nat Prod 58:1722–1726.

    CAS  Google Scholar 

  • Kashman Y, Groweiss A, Shmueli U (1980) Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge Latrunculia magifica. Tetrahedron Lett 21:3629–3632.

    CAS  Google Scholar 

  • Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Sakai R, Higa T, Kashman Y (1987) Antitumor macrolides isolated from a marine sponge Theonella sp.: structure revision of misakinolide A. Tetrahedron Lett 28:6225–6228.

    CAS  Google Scholar 

  • Kerbrat P, Dieras V, Pavlidis N, Ravaud A, Wanders J, Fumoleau P; EORTC Early Clinical Studies Group/New Drug Development Office (2003) Phase II study of LU 103793 (dolastatin analogue) in patients with metastatic breast cancer. Eur J Cancer 39:317–320.

    CAS  Google Scholar 

  • Kerksiek K, Mejillano MR, Schwartz RE, Georg GI, Himes RH (1995) Interaction of cryptophycin 1 with tubulin and microtubules. FEBS Lett 377:59–61.

    CAS  Google Scholar 

  • Kernan MR, Faulkner DJ (1987) Halichondramide, an antifungal macrolide from the sponge halichondria sp. Tetrahedron Lett 28:2809–2812.

    CAS  Google Scholar 

  • Kigoshi H, Suenaga K, Takagi M, Akao A, Kanematsu K, Kamei N, Okugawa Y, Yamada K (2002) Cytotoxicity and actin-depolymerizing activity of aplyronine A, a potent antitumor macrolide or marine origin, and its analogs. Tetrahedron 58:1075–1102.

    CAS  Google Scholar 

  • Kindler HL, Tothy PK, Wolff R, McCormack RA, Abbruzzese JL, Mani S, Wade-Oliver KT, Vokes EE (2005) Phase II trials of dolastatin-10 in advanced pancreaticobiliary cancers. Invest New Drugs 23:489–493.

    CAS  Google Scholar 

  • Klenchin VA, Allingham JS, King R, Tanaka J, Marriott G, Rayment I (2003) Trisoxazole macrolide toxins mimic the binding of actin-capping proteins to actin. Nat Struct Biol 10: 1058–1063.

    CAS  Google Scholar 

  • Klenchin VA, King R, Tanaka J, Marriott G, Rayment I (2005) Structural basis of swinholide A binding to actin. Chem Biol 12:287–291.

    CAS  Google Scholar 

  • Kobayashi M, Tanaka J, Katori T, Matsuura M, Kitagawa I (1989) Structure of swinholide A, a potent cytotoxic macrolide from the Okinawan marine sponge Theonella swinhoei. Tetrahedron Lett 30:2963–2966.

    CAS  Google Scholar 

  • Kobayashi J, Shigemori H, Ishibashi M, Yamasu T, Hirota H, Sasaki T (1991) Amphidinolides G and H: new potent cytotoxic macrolides from the cultured symbiotic dinoflagellate Amphidinium sp. J Org Chem 56:5221–5224.

    CAS  Google Scholar 

  • Kobayashi J, Murata O, Shigemori H, Sasaki T (1993) Jaspisamides A-C, new cytotoxic macrolides from the Okinawan sponge Jaspis sp. J Nat Prod 56:787–791.

    CAS  Google Scholar 

  • Kobayashi J, Tsuda M, Fuse H, Sasaki T, Mikami Y (1997) Halishigamides A-D, new cytotoxic oxazole-containing metabolites from Okinawan sponge Halichondria sp. J Nat Prod 60: 150–154.

    CAS  Google Scholar 

  • Kobayashi M, Aoki S, Sakai H, Kawazoe K, Kihara N, Sasaki T, Kitagawa I (1993a) Altohyrtin A, a potent anti-tumor macrolide from the Okinawan marine sponge Hyrtios altum. Tetrahedron Lett 34:2795–2798.

    CAS  Google Scholar 

  • Kobayashi M, Aoki S, Sakai H, Kihara N, Sasaki T, Kitagawa I (1993b) Altohyrtins B and C and 5-desacetylaltohyrtin A, potent cytotoxic macrolide congeners of altohyrtin A, from the Okinawan marine sponge Hyrtios altum. Chem Pharm Bull 41:989––991.

    CAS  Google Scholar 

  • Kobayashi M, Aoki S, Ohyabu N, Kurosu M, Wang W, Kitagawa I (1994a) Arenastatin A, a potent cytotoxic depsipeptide from the Okinawan marine sponge Dysidea arenaria. Chem Pharm Bull 42:2196–2198.

    CAS  Google Scholar 

  • Kobayashi M, Aoki S, Kitagawa I (1994b) Absolute stereostructures of altohyrtin A and its congeners, potent cytotoxic macrolides from the Okinawan marine sponge Hyrtios altum. Tetrahedron Lett 35:1243–1246.

    CAS  Google Scholar 

  • König GM, Kehraus S, Seibert SF, Abdel-Lateff A, Müller D (2006) Natural products from marine organisms and their associated microbes. ChemBioChem 7:229–238.

    Google Scholar 

  • Korn ED (1982) Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev 62:672–737.

    CAS  Google Scholar 

  • Kouyama T, Mihashi, K (1981) Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem 114:33–38.

    CAS  Google Scholar 

  • Krug LM, Miller VA, Kalemkerian GP, Kraut MJ, Ng KK, Heelan RT, Pizzo BA, Perez W, McClean N, Kris MG (2000) Phase II study of dolastatin-10 in patients with advanced non-small-cell lung cancer. Ann Oncol 11:227–228.

    CAS  Google Scholar 

  • Kuroda T, Suenaga K, Sasakura A, Handa T, Okamoto K, Kigoshi H (2006) Study of the interaction between actin and antitumor substance aplyronine A with a novel fluorescent photoaffinity probe. Bioconj Chem 17:524–529.

    CAS  Google Scholar 

  • Lee JC, Timasheff SN (1977) In vitro reconstitution of calf brain microtubules: effects of solution variable. Biochemistry 16:1754–1762.

    CAS  Google Scholar 

  • Lindel T, Jensen PR, Fenical W, Long BH, Casazza AM, Carboni J, Fairchild CR (1997) Eleutherobin, a new cytotoxin that mimics paclitaxel (Taxol) by stabilizing microtubules. J Am Chem Soc 119:8744–8745.

    CAS  Google Scholar 

  • Lindquist N, Fenical W, Van Duyne GD, Clardy J (1991) Isolation and structure determination of diazonamides A and B, unusual cytotoxic metabolites from the marine ascidian Diazona chinensis. J Am Chem Soc 113:2303–2304.

    CAS  Google Scholar 

  • Long BH, Carboni JM, Wasserman AJ, Cornell LA, Casazza AM, Jensen PR, Lindel T, Fenical W, Fairchild CR (1998) Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol). Cancer Res 58:1111–1115.

    CAS  Google Scholar 

  • Longley RE, Gunasekera SP, Faherty D, McLane J, Dumont F (1993) Immunosuppression by discodermolide. Ann NY Acad Sci 696:94–107.

    CAS  Google Scholar 

  • Ludueña RF, Roach MC, Prasad V, Pettit GR (1993) Interaction of halichondrin B and homohali-chondrin B with bovine brain tubulin. Biochem Pharmacol 45:421–427.

    Google Scholar 

  • MacLean-Fletcher SD, Pollard TD (1980) Viscometric analysis of the gelation of acanthamoeba extracts and purification of two gelation factors. J Cell Biol 85:414–428.

    CAS  Google Scholar 

  • Madiraju C, Edler MC, Hamel E, Raccor BS, Van Balachandran R, Zhu G, Giuliano KA, Vogt A, Shin Y, Fournier J-H, Fukui Y, Brückner AM, Curran DP, Day BW (2005) Tubulin assembly, taxoid site binding, and cellular effects of the microtubule-stabilizing agent dictyostatin. Biochemistry 44:15053–15063.

    CAS  Google Scholar 

  • Mandelkow E, Mandelkow EM (2002) Kinesin motors and disease. Trends Cell Biol 12:585–591.

    CAS  Google Scholar 

  • Mann J (2002) Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2:143–148.

    CAS  Google Scholar 

  • Margolin K, Longmate J, Synold TW, Gandara DR, Weber J, Gonzalez R, Johansen MJ, Newman R, Baratta T, Doroshow JH (2001) Dolastatin-10 in metastatic melanoma: a phase II and pharmokinetic trial of the California Cancer Consortium. Invest New Drugs 19:335–340.

    CAS  Google Scholar 

  • Marks RS, Graham DL, Sloan JA, Hillman S, Fishkoff S, Krook JE, Okuno SH, Mailliard JA, Fitch TR, Addo F (2003) A phase II study of the dolastatin 15 analogue LU 103793 in the treatment of advanced non-small-cell lung cancer. Am J Clin Oncol 26:336–337.

    CAS  Google Scholar 

  • Marquez BL, Watts KS, Yokochi A, Roberts MA, Verdier-Pinard P, Jimenez JI, Hamel E, Scheuer PJ, Gerwick WH (2002) Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. J Nat Prod 65:866–871.

    CAS  Google Scholar 

  • Marriott G, Zechel K, Jovin TM (1988) Spectroscopic and functional characterization of an environmentally sensitive fluorescent actin conjugate. Biochemistry 27:6214–6220.

    CAS  Google Scholar 

  • Matsunaga S, Fusetani N, Hashimoto K, Koseki K, Noma M (1986) Bioactive marine metabolites. Part 13. Kabiramide C, a novel antifungal macrolide from nudibranch eggmasses. J Am Chem Soc 108:847–849.

    CAS  Google Scholar 

  • Matsunaga S, Fusetani N, Hashimoto K, Koseki K, Noma M, Noguchi H, Sankawa U (1989) Bioactive marine metabolites. 25. Further kabiramides and halichondramides, cytotoxic macrolides embracing trisoxazole, from the Hexabranchus egg masses. J Org Chem 54:1360–1363.

    CAS  Google Scholar 

  • McGough AM, Staiger CJ, Min J-K, Simonetti KD (2003) The gelsolin family of actin regulatory proteins: modular structures, versatile functions. FEBS Lett 552:75–81.

    CAS  Google Scholar 

  • Mooberry SL, Busquets L, Tien G (1997) Induction of apoptosis by cryptophycin 1, a new antimicrotubule agent. Int J Cancer 73:440–448.

    CAS  Google Scholar 

  • Mooberry SL, Tien G, Hernandez AH, Plubrukarn A, Davidson BS (1999) Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 59:653–660.

    CAS  Google Scholar 

  • Moore RE (1981) Constituents of blue-green algae. In: Scheur PJ (ed) Marine natural products. Academic Press, New York, Vol 4, pp 1–52.

    Google Scholar 

  • Morton WM, Ayscough KR, McLaughlin PJ (2000) Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat Cell Biol 2:376–378.

    CAS  Google Scholar 

  • Mundy DI, Machleidt T, Ying Y, Anderson RGW, Bloom GS (2002) Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115:4327–4339.

    CAS  Google Scholar 

  • Murray AW (1992) Creative blocks: cell cycle checkpoints and feedback controls. Nature 359: 599–604.

    CAS  Google Scholar 

  • Nagle A, Hur W, Gray NS (2006) Antimitotic agents of natural origin. Curr Drug Target 7:305–326.

    CAS  Google Scholar 

  • Nogales E, Wang H-W, Niederstrasser H (2003) Tubulin rings: which way do they curve? Curr Opin Struct Biol 13:256–261.

    CAS  Google Scholar 

  • Nunes M, Kaplan J, Wooters J, Hari M, Minnick AA Jr, May MK, Shi C, Musto S, Beyer C, Krishnamurthy G, Qiu Y, Loganzo F, Ayral-Kaloustian S, Zask A, Greenberger LM (2005) Two photoaffinity analogues of the tripeptide, hemiasterlin, exclusively label α-tubulin. Biochemistry 44:6844–6857.

    CAS  Google Scholar 

  • Oda T, Crane ZD, Dicus CW, Sufi BA, Bates RB (2003) Dolastatin 11 connects two long-pitch strands in F-actin to stabilize microfilaments. J Mol Biol 328:319–324.

    CAS  Google Scholar 

  • Oda T, Namba K, Maéda Y (2005) Position and orientation of phalloidin in F-actin determined by X-ray fiber diffraction analysis. Biophys J 88:2727–2736.

    CAS  Google Scholar 

  • Ojika M, Kigoshi H, Yoshida Y, Ishigaki T, Nisiwaki M, Tsukada I, Arakawa M, Ekimoto H, Yamada K (2007) Aplyronine A, a potent antitumor macrolide of marine origin, and the congeners aplyronines B and C: isolation, structures, and bioactivities. Tetrahedron 63:3138–3167.

    CAS  Google Scholar 

  • Oosawa F, Asakura S (1975) Theory of polymerization equilibrium. In: Horecker B, Kaplan NO, Marmur J, Scheraga HA (eds) Thermodynamics of the polymerization of proteins. Academic Press, London, pp 109–116.

    Google Scholar 

  • Oosawa F, Asakura S, Hotta K, Ooi T (1959) G-F transformation of actin as a fibrous condensation. J Polymer Sci 37:323–326.

    CAS  Google Scholar 

  • Patterson GM, Carmeli S (1992) Biological effects of tolytoxin (6-hydroxy-7-O-methyl-scytophycin b), a potent bioactive metabolite from cyanobacteria. Arch Microbiol 157: 406–410.

    CAS  Google Scholar 

  • Patterson GM, Smith CD, Kimura LH, Britton BA, Carmeli S (1993) Action of tolytoxin on cell morphology, cytoskeletal organization, and actin polymerization. Cell Motil Cytoskel 24:39–48.

    CAS  Google Scholar 

  • Paull KD, Lin CM, Malspeis L, Hamel E (1992) Identification of novel antimitotic agents acting at the tubulin level by computer-assisted evaluation of differential cytotoxicity data. Cancer Res 52:3892–3900.

    CAS  Google Scholar 

  • Perez EA, Hillman DW, Fishkin PA, Krook JE, Tan WW, Kuriakose PA, Alberts SR, Dakhil SR (2005) Phase II trial of dolastatin-10 in patients with advanced breast cancer. Invest New Drugs 23:257–261.

    CAS  Google Scholar 

  • Pettit GR (1997) The dolastatins. Prog Chem Org Nat Prod 70:1–79.

    CAS  Google Scholar 

  • Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, Schmidt JM, Baczynskyj L, Tomer KB, Bontems RJ (1987) The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J Am Chem Soc 109:6883–6885.

    CAS  Google Scholar 

  • Pettit GR, Kamano Y, Dufresne C, Cerny RL, Herald CL, Schmidt JM (1989) Isolation and structure of the cytostatic linear depsipeptide dolastatin 15. J Org Chem 54:6005–6006.

    CAS  Google Scholar 

  • Pettit GR, Cichacz ZA, Gao F, Herald CL, Boyd MR (1993a) Isolation and structure of the remarkable human cancer cell growth inhibitors spongistatins 2 and 3 from an eastern Indian Ocean Spongia sp. J Chem Soc Chem Commun 1166–1168.

    Google Scholar 

  • Pettit GR, Cichacz ZA, Gao F, Herald CL, Boyd MR, Schmidt JM, Hooper JNA (1993b) Isolation and structure of spongistatin 1. J Org Chem 58:1302–1304.

    CAS  Google Scholar 

  • Pettit GR, Herald CL, Cichacz ZA, Gao F, Boyd MR, Christie ND, Schmidt JM (1993c) Antineoplastic agents. 293. The exceptional human cancer cell growth inhibitors spongistatins 6 and 7. Nat Prod Lett 3:239–244.

    CAS  Google Scholar 

  • Pettit GR, Herald CL, Cichacz ZA, Gao F, Schmidt JM, Boyd MR, Christie ND, Boettner FE (1993d) Antineoplastic agents. 288. Isolation and structure of the powerful human cancer cell growth inhibitors spongistatins 4 and 5 from an African Spirastrella spinispirulifera (Porifera). J Chem Soc Chem Commun 1805–1807.

    Google Scholar 

  • Pettit GR, Cichacz ZA, Gao F, Boyd MR, Schmidt JM (1994a) Isolation and structure of the cancer cell growth inhibitor dictyostatin 1. J Chem Soc Chem Comm 1111–1112.

    Google Scholar 

  • Pettit GR, Cichacz ZA, Herald CL, Gao F, Boyd MR, Schmidt JM, Hamel E, Bai R (1994b) Antineoplastic agents 300. Isolation and structure of the rare human cancer inhibitory macrocyclic lactones spongistatins 8 and 9. J Chem Soc Chem Commun 1605–1606.

    Google Scholar 

  • Quiñoà E, Kakou Y, Crews P (1988) Fijianolides, polyketide heterocyclics from a marine sponge. J Org Chem 53:3642–3644.

    Google Scholar 

  • Ritter T, Carreira EM (2002) The diazonamides: the plot thickens. Angew Chem Int Ed 41: 2489–2495.

    CAS  Google Scholar 

  • Rizvi SA, Tereshko V, Kossiakoff AA, Kozmin SA (2006) Structure of bistramide A-actin complex at a 1.35 Å resolution. J Am Chem Soc 128:3882–3883.

    CAS  Google Scholar 

  • Roesener JA, Scheuer PJ (1986) Ulapualide A and B, extraordinary antitumor macrolides from nudibranch eggmasses. J Am Chem Soc 108:846–847.

    CAS  Google Scholar 

  • Saad ED, Kraut EH, Hoff PM, Moore DF Jr, Jones D, Pazdur R, Abbruzzese JL (2002) Phase II study of dolastatin-10 as first-line treatment for advanced colorectal cancer. Am J Clin Oncol 25:451–453.

    Google Scholar 

  • Saito S, Watabe S, Ozaki H, Fusetani N, Karaki H (1994) Mycalolide B, a novel actin depolymerizing agent. J Biol Chem 269:29710–29714.

    CAS  Google Scholar 

  • Saito S, Watabe S, Ozaki H, Kigoshi H, Yamada K, Fusetani N, Karaki H (1996) Novel actin depolymerizing macrolide aplyronine A. J Biochem 120:552–555.

    CAS  Google Scholar 

  • Saito S, Ozaki H, Kobayashi M, Kobayashi J, Suzuki T, Kobayashi H, Watabe S, Fusetani N Karaki H (1997) Inhibitory effects of trisoxazole macrolides isolated from marine products on actin polymerization. Jpn J Pharmacol 73 (Suppl. I):119P.

    Google Scholar 

  • Saito S, Watabe S, Ozaki H, Kobayashi M, Suzuki T, Kobayashi H, Fusetani N, Karaki H (1998) Actin-depolymerizing effect of dimeric macrolides, bistheonellide A and swinholide A. J Biochem 123:571–578.

    CAS  Google Scholar 

  • Saito S, Feng J, Kira A, Kobayashi J, Ohizumi Y (2004) Amphidinolide H, a novel type of actinstabilizing agent isolated from dinoflagellate. Biochem Biophys Res Comm 320:961–965.

    CAS  Google Scholar 

  • Sakai R, Higa T, Kashman Y (1986) Misakinolide-A, an antitumor macrolide from the marine sponge Theonella sp. Chem Lett 1499–1502.

    Google Scholar 

  • Sampath P, Pollard TD (1991) Effects of cytochalasin, phalloidin, and pH on the elongation of actin filaments. Biochemistry 30:1973–1980.

    CAS  Google Scholar 

  • Sasaki H, Ozaki H, Karaki H, Nonomura Y (2004) Actin filaments play an essential role for transport of nascent HIV-1 proteins in host cells. Biochem Biophys Res Commun 316:588–593.

    CAS  Google Scholar 

  • Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667.

    CAS  Google Scholar 

  • Schoffski P, Thate B, Beutel G, Bolte O, Otto D, Hofmann M, Ganser A, Jenner A, Cheverton P, Wanders J, Oguma T, Atsumi R, Satomi M (2004) Phase I and pharmacokinetic study of TZT-1027, a novel synthetic dolastatin 10 derivative, administered as a 1-hour intravenous infusion every 3 weeks in patients with advanced refractory cancer. Ann Oncol 15:671–679.

    CAS  Google Scholar 

  • Schwartz RE, Hirsch CF, Sesin DF, Flor JE, Chartrain M, Fromtling RE, Harris GH, Salvatore MJ, Liesch JM, Yudin K (1990) Pharmaceuticals from cultured algae. J Ind Microbiol 5: 113–123.

    CAS  Google Scholar 

  • Sessa C, Weigang-Köhler K, Pagani O, Greim G, Mor O, De Pas T, Burgess M, Weimer I, Johnson R (2002) Phase I and pharmacological studies of the cryptophycin analogue LY355703 administered on a single intermittent or weekly schedule. Eur J Cancer 38:2388–2396.

    CAS  Google Scholar 

  • Shelanski ML, Taylor EW (1967) Isolation of a protein subunit from microtubules. J Cell Biol 34: 549–554.

    CAS  Google Scholar 

  • Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci 70:765–768.

    CAS  Google Scholar 

  • Shin J, Lee H-S, Kim J-Y, Shin HJ, Ahn J-W, Paul VJ (2004) New macrolides from the sponge Chondrosia corticata. J Nat Prod 67:1889–1892.

    CAS  Google Scholar 

  • Silacci P, Mazzolai L, Gauci C, Stergiopulos N, Yin HL, Hayoz D (2004) Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci 61:2614–2623.

    CAS  Google Scholar 

  • Smith CD, Zhang X (1996) Mechanism of action of cryptophycin: interaction with the Vinca alkaloid domain of tubulin. J Biol Chem 271:6192–6198.

    CAS  Google Scholar 

  • Smith CD, Zhang X, Mooberry SL, Patterson GM, Moore RE (1994) Cryptophycin: a new antimicrotubule agent active against drug-resistant cells. Cancer Res 54:3779–3784.

    CAS  Google Scholar 

  • Spector I, Shochet NR, Kashman Y (1983) Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 219:493–495.

    CAS  Google Scholar 

  • Spector I, Braet F, Shochet NR, Bubb MR (1999) New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc Res Tech 47:18–37.

    CAS  Google Scholar 

  • Statsuk AV, Bai R, Baryza JL, Verma VA, Hamel E, Wender PA, Kozmin SA (2005) Actin is the primary cellular receptor of bistramide A. Nat Chem Biol 1:383–388.

    CAS  Google Scholar 

  • Stevenson JP, Sun W, Gallagher M, Johnson R, Vaughn D, Schuchter L, Algazy K, Hahn S, Enas N, Ellis D, Thornton D, O'Dwyer PJ (2002) Phase I trial of the cryptophycin analogue LY355703 administered as an intravenous infusion on a day 1 and 8 schedule every 21 days. Clin Cancer Res 8:2524–2529.

    CAS  Google Scholar 

  • Stratmann K, Moore RE, Bonjouklian R, Deeter JB, Patterson GML, Shaffer S, Smith CD, Smitka TA (1994) Welwitindolinones, unusual alkaloids from the blue-green algae Hapalosiphon welwitschii and Westiella intricata. Relationship to Fischer indoles and hapalinodoles. J Am Chem Soc 116:9935–9942.

    CAS  Google Scholar 

  • Straub FB (1942) Actin. Stud Inst Med Chem Univ Szeged II:1–15.

    Google Scholar 

  • Suenaga K, Miya S, Kuroda T, Handa T, Kanematsu K, Sakakura A, Kigoshi H (2004) Synthesis and actin-depolymerizing activity of mycalolide analogs. Tetrahedron Lett 45:5383–5386.

    CAS  Google Scholar 

  • Talpir R, Benayahu Y, Kashman Y, Pannell L, Schleyer M (1994) Hemiasterlin and geodiamolide TA; two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick). Tetrahedron Lett 35:4453–4456.

    CAS  Google Scholar 

  • Tamura K, Nakagawa K, Kurata T, Satoh T, Nogami T, Takeda K, Mitsuoka S, Yoshimura N, Kudoh S, Negoro S, Fukuoka M (2007) Phase I study of TZT-1027, a novel synthetic dolastatin 10 derivative and inhibitor of tubulin polymerization, which was administered to patients with advanced solid tumors on days 1 and 8 in 3-week courses. Cancer Chemother Pharmacol 60:285–293.

    CAS  Google Scholar 

  • Tanaka J, Yan Y, Choi J, Bai J, Klenchin VA, Rayment I, Marriott G (2003) Biomolecular mimicry in the actin cytoskeleton: Mechanisms underlying the cytotoxicity of kabiramide C and related macrolides. Proc Nat Acad Sci USA 100:13851–13856.

    CAS  Google Scholar 

  • ter Haar E, Kowalski RJ, Hamel E, Lin CM, Longley RE, Gunasekera SP, Rosenkranz HS, Day BW (1996a) Discodermolide, A cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry 35:243–250.

    CAS  Google Scholar 

  • ter Haar E, Rosenkranz HS, Hamel E, Day BW. (1996b) Computational and molecular modeling evaluation of the structural basis for tubulin polymerization inhibition by colchicine site agents. Bioorg Med Chem 4:1659–1671.

    CAS  Google Scholar 

  • Terry DR, Spector I, Higa T, Bubb MR (1997) Misakinolide A is a marine macrolide that caps but does not sever filamentous actin. J Biol Chem 272:7841–7845.

    CAS  Google Scholar 

  • Toonen RF, Kochubey O, de Wit H, Gulyas-Kovacs A, Konijnenburg B, Sørensen JB, Klingauf J, Verhage M (2006) Dissecting docking and tethering of secretory vesicles at the target membrane. EMBO J 25:3725–3737.

    CAS  Google Scholar 

  • Usui T, Kazami S, Dohmae N, Mashimo Y, Kondo H, Tsuda M, Goi Terasaki A, Ohashi K, Kobayashi J, Osada H (2004) Amphidinolide H, a potent cytotoxic macrolide, covalently binds on actin subdomain 4 and stabilizes actin filament. Chem Biol 11:1269–1277.

    CAS  Google Scholar 

  • Vaishampayan U, Glode M, Du W, Kraft A, Hudes G, Wright J, Hussain M (2000) Phase II study of dolastatin-10 in patients with hormone-refractory metastatic prostate adenocarcinoma. Clin Cancer Res 6:4205–4208.

    CAS  Google Scholar 

  • Wang G, Shang L, Burgett AWG, Harran PG, Wang X (2007) Diazonamide toxins reveal an unexpected function for ornithine δ-amino transferase in mitotic cell division. Proc Natl Acad Sci USA 104:2068–2073.

    CAS  Google Scholar 

  • Wang TH, Wang HS, Soong YK (2000) Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 88:2619–2628.

    CAS  Google Scholar 

  • Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327.

    CAS  Google Scholar 

  • West LM, Northcote PT, Battershill CN (2000) Peloruside A: A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 65:445–449.

    CAS  Google Scholar 

  • Wieland T (1977) Interaction of phallotoxins with actin. Adv Enz Reg 15:285–300.

    CAS  Google Scholar 

  • Xia S, Kenesky CS, Rucker PV, Smith AB III, Orr GA, Horwitz SB (2006) A photoaffinity analogue of discodermolide specifically labels a peptide in ß-tubulin. Biochemistry 45:11762–11775.

    CAS  Google Scholar 

  • Yamada K, Ojika M, Ishigaki T, Yoshida Y (1993) Aplyronine A, a potent antitumor substance, and the congeners aplyronines B and C isolated from the sea hare Aplysia kurodai. J Am Chem Soc 115:11020–11021.

    CAS  Google Scholar 

  • Yasumoto T, Murata M, Oshima Y, Sano M, Matsumoto GK, Clardy J (1985) Diarrhetic shellfish toxins. Tetrahedron 41:1019–1025.

    CAS  Google Scholar 

  • Yeung K-S, Paterson I (2002) Actin-binding marine macrolides: Total synthesis and biological importance. Angew Chem Int Ed 41:4632–4653.

    CAS  Google Scholar 

  • Zabriskie TM, Klocke JA, Ireland CM, Marcus AH, Molinski TF, Faulkner DJ, Xu C, Clardy J (1986) Jaspamide, a modified peptide from a jaspis sponge, with insecticidal and antifungal activity. J Am Chem Soc 108:3123–3124.

    CAS  Google Scholar 

  • Zhang X, Smith CD (1996) Microtubule effects of welwistatin, a cyanobacterial indolinone that circumvents multiple drug resistance. Mol Pharmacol 49:288–294.

    CAS  Google Scholar 

  • Zhang X, Minale L, Zampella A, Smith CD (1997) Microfilament depletion and circumvention of multiple drug resistance by sphinxolides. Cancer Res 57:3751–3758.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saito, Sy. (2009). Toxins Affecting Actin Filaments and Microtubules. In: Fusetani, N., Kem, W. (eds) Marine Toxins as Research Tools. Progress in Molecular and Subcellular Biology, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87895-7_7

Download citation

Publish with us

Policies and ethics