Skip to main content

Molecular and Cellular Mechanisms of Action of Nicotine in the CNS

  • Chapter
Book cover Nicotine Psychopharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 192))

Abstract

Nicotine achieves its psychopharmacological effects by interacting with nicotinic acetylcholine receptors (nAChRs) in the brain. There are numerous subtypes of nAChR that differ in their properties, including their sensitivity to nicotine, permeability to calcium and propensity to desensitise. The nAChRs are differentially localised to different brain regions and are found on presynaptic terminals as well as in somatodendritic regions of neurones. Through their permeability to cations, these ion channel proteins can influence both neuronal excitability and cell signalling mechanisms, and these various responses can contribute to the development or maintenance of dependence. However, many questions and uncertainties remain in our understanding of these events and their relevance to tobacco addiction. In this chapter, we briefly overview the fundamental characteristics of nAChRs that are germane to nicotine's effects and then consider the cellular responses to acute and chronic nicotine, with particular emphasis on dopamine systems because they have been the most widely studied in the context of nicotine dependence. Where appropriate, methodological aspects are critically reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson DJ, Puttfarcken PS, Jacobs I, Faltynek C (2000) Assessment of nicotinic acetylcholine receptor-mediated release of [3H]-norepinephrine from rat brain slices using a new 96-well format assay. Neuropharmacology 39:2663–2672

    Article  PubMed  CAS  Google Scholar 

  • Anney RJ, Olsson CA, Lotfi-Miri M, Patton GC, Williamson R (2004) Nicotine dependence in a prospective population-based study of adolescents: the protective role of a functional tyrosine hydroxylase polymorphism. Pharmacogenetics 14:73–81

    Article  PubMed  CAS  Google Scholar 

  • Auerbach A, Akk G (1998) Desensitization of mouse nicotinic acetylcholine receptor channels. A two-gate mechanism. J Gen Physiol 112:181–197

    Article  PubMed  CAS  Google Scholar 

  • Balfour DJ (2004) The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus accumbens. Nicotine Tob Res 6:899–912

    Article  PubMed  CAS  Google Scholar 

  • Barik J, Wonnacott S (2006) Indirect modulation by alpha7 nicotinic acetylcholine receptors of noradrenaline release in rat hippocampal slices: interaction with glutamate and GABA systems and effect of nicotine withdrawal. Mol Pharmacol 69:618–628

    Article  PubMed  CAS  Google Scholar 

  • Benwell ME, Balfour DJ (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105:849–856

    PubMed  CAS  Google Scholar 

  • Benwell ME, Balfour DJ (1997) Regional variation in the effects of nicotine on catecholamine overflow in rat brain. Eur J Pharmacol 325:13–20

    Article  PubMed  CAS  Google Scholar 

  • Benwell ME, Balfour DJ, Anderson JM (1988) Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem 50:1243–1247

    Article  PubMed  CAS  Google Scholar 

  • Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515–532

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  • Bertrand D, Galzi JL, Devillers-Thiery A, Bertrand S, Changeux JP (1993) Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nico-tinic receptor. Proc Natl Acad Sci USA 90:6971–6975

    Article  PubMed  CAS  Google Scholar 

  • Bitner RS, Bunnelle WH, Anderson DJ, Briggs CA, Buccafusco J, Curzon P, Decker MW, Frost JM, Gronlien JH, Gubbins E, Li J, Malysz J, Markosyan S, Marsh K, Meyer MD, Nikkel AL, Radek RJ, Robb HM, Timmermann D, Sullivan JP, Gopalakrishnan M (2007) Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J Neurosci. 27:10578–10587

    Article  PubMed  CAS  Google Scholar 

  • Blount P, Merlie JP (1989) Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuron 3:349–357

    Article  PubMed  CAS  Google Scholar 

  • Brami-Cherrier K, Valjent E, Hervé D, Darragh J, Corvol JC, Pages C, Arthur SJ, Girault JA, Caboche J (2005) Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci 25:11444–11454

    Article  PubMed  CAS  Google Scholar 

  • Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der OJ, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276

    Article  PubMed  CAS  Google Scholar 

  • Brunzell DH, Russell DS, Picciotto MR (2003) In vivo nicotine treatment regulates mesocorticol-imbic CREB and ERK signaling in C57Bl/6J mice. J Neurochem 84:1431–1441

    Article  PubMed  CAS  Google Scholar 

  • Buisson B, Bertrand D (2001) Chronic exposure to nicotine upregulates the human alpha4beta2 nicotinic acetylcholine receptor function. J Neurosci 21:1819–1829

    PubMed  CAS  Google Scholar 

  • Celie PH, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, Sixma TK (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41:907–914

    Article  PubMed  CAS  Google Scholar 

  • Champtiaux N, Changeux JP (2002) Knock-out and knock-in mice to investigate the role of nico-tinic receptors in the central nervous system. Curr Drug Targets CNS Neurol Disord 1:319–330

    Article  PubMed  CAS  Google Scholar 

  • Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, Lena C, Le Novere N, Marubio L, Picciotto M, Zoli M (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Brain Res Rev 26:198–216

    Article  PubMed  CAS  Google Scholar 

  • Changeux JP, Taly A (2008) Nicotinic receptors, allosteric proteins and medicine. Trends Mol Med 14:93–102

    PubMed  CAS  Google Scholar 

  • Clarke PB, Reuben M (1996) Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. Br J Pharmacol 117:595–606

    PubMed  CAS  Google Scholar 

  • Collin T, Marty A, Llano I (2005) Presynaptic calcium stores and synaptic transmission. Curr Opin Neurobiol 15:275–281

    Article  PubMed  CAS  Google Scholar 

  • Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458

    Article  PubMed  CAS  Google Scholar 

  • Couey JJ, Meredith RM, Spijker S, Poorthuis RB, Smit AB, Brussaard AB, Mansvelder HD (2007) Neuron distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex. Neuron 54:73–87

    Article  PubMed  CAS  Google Scholar 

  • Cui C, Booker TK, Allen RS, Grady SR, Whiteaker P, Marks MJ, Salminen O, Tritto T, Butt CM, Allen WR, Stitzel JA, McIntosh JM, Boulter J, Collins AC, Heinemann SF (2003) The beta3 nicotinic receptor subunit: a component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. J Neurosci 23:11045–11053

    PubMed  CAS  Google Scholar 

  • Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324

    Article  PubMed  CAS  Google Scholar 

  • Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    Article  PubMed  CAS  Google Scholar 

  • Dani JA, Heinemann S (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905–908

    Article  PubMed  CAS  Google Scholar 

  • Darsow T, Booker TK, Pina-Crespo JC, Heinemann SF (2005) Exocytic trafficking is required for nicotine-induced up-regulation of alpha 4 beta 2 nicotinic acetylcholine receptors. J Biol Chem 280:18311–18320

    Article  PubMed  CAS  Google Scholar 

  • Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L (2007) Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat Neurosci 10:953–962

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  • Dickinson JA, Hanrott KE, Mok MH, Kew JN, Wonnacott S (2007) Differential coupling of alpha7 and non-alpha7 nicotinic acetylcholine receptors to calcium-induced calcium release and voltage-operated calcium channels in PC12 cells. J Neurochem 100:1089–1096

    Article  PubMed  CAS  Google Scholar 

  • Dickinson JA, Kew JN, Wonnacott S (2008) Presynaptic alpha7 and beta2-containing nicotinic acetylcholine receptors modulate excitatory amino acid release from rat prefrontal cortex nerve terminals via distinct cellular mechanisms. Mol Pharmacol 74:348–359

    Article  PubMed  CAS  Google Scholar 

  • Done C, Silverstone P, Sharp T (1992) Effect of naloxone-precipitated morphine withdrawal on noradrenaline release in rat hippocampus in vivo. Eur J Pharmacol 215:333–336

    Article  PubMed  CAS  Google Scholar 

  • Dunckley T, Lukas RJ (2003) Nicotine modulates the expression of a diverse set of genes in the neuronal sh-sy5y cell line. J Biol Chem 278:15633–15640

    Article  PubMed  CAS  Google Scholar 

  • Dunckley, Lukas RJ (2006) Nicotinic modulation of gene expression in SH-SY5Y neuroblastoma cells. Brain Res 1116:39–49

    Article  PubMed  CAS  Google Scholar 

  • Eilers H, Schaeffer E, Bickler PE, Forsayeth JR (1997) Functional deactivation of the major neuronal nicotinic receptor caused by nicotine and a protein kinase C-dependent mechanism. Mol Pharmacol 52:1105–1112

    PubMed  CAS  Google Scholar 

  • Emptage NJ, Reid CA, Fine A (2001) Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 29:197–208

    Article  PubMed  CAS  Google Scholar 

  • Exley R, Cragg SJ (2008) Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol 153:S283–S297

    Article  PubMed  CAS  Google Scholar 

  • Exley R, Clements MA, Hartung H, McIntosh JM, Cragg SJ (2007) Alpha6-Containing nicotinic acetylcholine receptors dominate the nicotine control of nopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology 33:2158–2166

    Article  PubMed  CAS  Google Scholar 

  • Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, Fine A (2001) Ultra-structural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci 21:7993–8003

    PubMed  CAS  Google Scholar 

  • Fagen ZM, Mitchum R, Vezina P, McGehee DS (2007) Enhanced nicotinic receptor function and drug abuse vulnerability. J Neurosci 27:8771–8778

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Matta SG, Brower VG, Sharp BM (2001) Norepinephrine secretion in the hypothalamic paraventricular nucleus of rats during unlimited access to self-administered nicotine: an in vivo microdialysis study. J Neurosci 21:8979–8989

    PubMed  CAS  Google Scholar 

  • Fu Y, Matta SG, Kane VB, Sharp BM (2003) Norepinephrine release in amygdala of rats during chronic nicotine self-administration: an in vivo microdialysis study. Neuropharmacology 45:514–523

    Article  PubMed  CAS  Google Scholar 

  • Fucile S (2004) Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35:1–8

    Article  PubMed  CAS  Google Scholar 

  • Gaddnas H, Pietila K, Ahtee L (2000) Effects of chronic oral nicotine treatment and its withdrawal on locomotor activity and brain monoamines in mice. Behav Brain Res 113:65–72

    Article  PubMed  CAS  Google Scholar 

  • Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27:5730–5743

    Article  PubMed  CAS  Google Scholar 

  • Gentry CL, Lukas RJ (2002) Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr Drug Targets CNS Neurol Disord 1:359–385

    Article  PubMed  CAS  Google Scholar 

  • Gerzanich V, Wang F, Kuryatov A, Lindstrom J (1998) Alpha 5 subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal alpha 3 nicotinic receptors. J Pharmacol Exp Ther 286:311–320

    PubMed  CAS  Google Scholar 

  • Girault JA, Valjent E, Caboche J, Hervé D (2007) ERK2: a logical AND gate critical for drug-induced plasticity? Curr Opin Pharmacol 7:77–85

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan M, Molinari EJ, Sullivan JP (1997) Regulation of human alpha4beta2 neuronal nicotinic acetylcholine receptors by cholinergic channel ligands and second messenger pathways. Mol Pharmacol 52:524–534

    PubMed  CAS  Google Scholar 

  • Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53:583–587

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Moretti M, Clementi F, Riganti L, McIntosh JM, Collins AC, Marks MJ, Whiteaker P (2005) Expression of nigrostriatal alpha 6-containing nicotinic acetylcholine receptors is selectively reduced, but not eliminated, by beta 3 subunit gene deletion. Mol Pharmacol 67:2007–2015

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491

    Article  PubMed  CAS  Google Scholar 

  • Gourlay SG, Benowitz NL (1997) Arteriovenous differences in plasma concentration of nicotine and catecholamines and related cardiovascular effects after smoking, nicotine nasal spray, and intravenous nicotine. Clin Pharmacol Ther 62:453–463

    Article  PubMed  CAS  Google Scholar 

  • Grady SR, Grun EU, Marks MJ, Collins AC (1997) Pharmacological comparison of transient and persistent [3H]dopamine release from mouse striatal synaptosomes and response to chronic l-nicotine treatment. J Pharmacol Exp Ther 282:32–43

    PubMed  CAS  Google Scholar 

  • Grady SR, Meinerz NM, Cao J, Reynolds AM, Picciotto MR, Changeux JP, McIntosh JM, Marks MJ, Collins AC (2001) Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: a function mediated by a different nachr than dopamine release from striatum. J Neurochem 76:258–268

    Article  PubMed  CAS  Google Scholar 

  • Grilli M, Parodi M, Raiteri M, Marchi M (2005) Chronic nicotine differentially affects the function of nicotinic receptor subtypes regulating neurotransmitter release. J Neurochem 93:1353–1360

    Article  PubMed  CAS  Google Scholar 

  • Gueorguiev VD, Zeman RJ, Meyer EM, Sabban EL (2000) Involvement of alpha7 nicotinic acetyl-choline receptors in activation of tyrosine hydroxylase and dopamine beta-hydroxylase gene expression in PC12 cells. J Neurochem 75:1997–2005

    Article  PubMed  CAS  Google Scholar 

  • Gueorguiev VD, Cheng SY, Sabban EL (2006) Prolonged activation of cAMP-response element-binding protein and ATF-2 needed for nicotine-triggered elevation of tyrosine hydroxylase gene transcription in PC12 cells. J Biol Chem 281:10188–10195

    Article  PubMed  CAS  Google Scholar 

  • Heimer L, Alheid GF, Zaborszky L (1985) Basal ganglia. In:Paxinos G (ed) The rat nervous system, vol 1. Academic, London, pp 37–87

    Google Scholar 

  • Hope BT, Nye HE, Kelz MB, Self DW, Iadarola MJ, Nakabeppu Y, Duman RS, Nestler EJ (1994) Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13:1235–1244

    Article  PubMed  CAS  Google Scholar 

  • Hu M, Liu QS, Chang KT, Berg DK (2002) Nicotinic regulation of CREB activation in hippocam-pal neurons by glutamatergic and nonglutamatergic pathways. Mol Cell Neurosci 21:616–625

    Article  PubMed  CAS  Google Scholar 

  • Hukkanen J, Jacob P, III, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695–703

    Article  PubMed  CAS  Google Scholar 

  • Jacobs I, Anderson DJ, Surowy CS, Puttfarcken PS (2002) differential regulation of nicotinic receptor-mediated neurotransmitter release following chronic (-)-nicotine administration. Neu-ropharmacology 43:847–856

    CAS  Google Scholar 

  • Jones IW, Bolam JP, Wonnacott S (2001) Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. J Comp Neurol 439:235–247

    Article  PubMed  CAS  Google Scholar 

  • Jones IW, Wonnacott S (2004) Precise localization of alpha7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. J Neurosci 24:11244–11252

    Article  PubMed  CAS  Google Scholar 

  • Kaiser S, Wonnacott S (2000) Alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [3H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 58: 312–318

    PubMed  CAS  Google Scholar 

  • Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114

    Article  PubMed  CAS  Google Scholar 

  • Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858

    Article  PubMed  CAS  Google Scholar 

  • Kawai H, Berg DK (2001) Nicotinic acetylcholine receptors containing alpha7 subunits on rat cortical neurons do not undergo long-lasting inactivation even when up-regulated by chronic nicotine exposure. J Neurochem 78:1367–1378

    Article  PubMed  CAS  Google Scholar 

  • Kedmi M, Orr-Urtreger A (2007) Differential brain transcriptome of beta4 nAChR subunit-deficient mice: is it the effect of the null mutation or the background strain? Physiol Genomics 28:213–222

    PubMed  CAS  Google Scholar 

  • Kenny PJ, Markou A (2005) Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. J Neurosci 25:6208–6212

    Article  PubMed  CAS  Google Scholar 

  • Klink R, de Kerchove d A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21: 1452–1463

    PubMed  CAS  Google Scholar 

  • Konu O, Kane JK, Barrett T, Vawter MP, Chang R, Ma JZ, Donovan DM, Sharp B, Becker KG, Li MD (2001) Region-specific transcriptional response to chronic nicotine in rat brain. Brain Res 909:194–203

    Article  PubMed  CAS  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT, Russo SJ, Laplant Q, Sasaki TS, Whistler KN, Neve RL, Self DW, Nestler EJ (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48:303–314

    Article  PubMed  CAS  Google Scholar 

  • Kuryatov A, Luo J, Cooper J, Lindstrom J (2005) Nicotine acts as a pharmacological chaperone to up-regulate human alpha4beta2 acetylcholine receptors. Mol Pharmacol 68:1839–1851

    PubMed  CAS  Google Scholar 

  • Kuryatov A, Onksen J, Lindstrom JM (2008) Roles of Accessory Subunits in {alpha}4{beta}2* Nicotinic Receptors. Mol Pharmacol 74:132–143

    Article  PubMed  CAS  Google Scholar 

  • Lai A, Parameswaran N, Khwaja M, Whiteaker P, Lindstrom JM, Fan H, McIntosh JM, Grady SR, Quik M (2005) Long-term nicotine treatment decreases striatal alpha 6* nicotinic acetylcholine receptor sites and function in mice. Mol Pharmacol 67:1639–1647

    Article  PubMed  CAS  Google Scholar 

  • Lapchak PA, Araujo DM, Quirion R, Collier B (1989) Effect of chronic nicotine treatment on nicotinic autoreceptor function and N-[3H]methylcarbamylcholine binding sites in the rat brain. J Neurochem 52:483–491

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 5:55–65

    Article  PubMed  CAS  Google Scholar 

  • Lee JL, Di Ciano P, Thomas KL, Everitt BJ (2005) Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47:795–801

    Article  PubMed  CAS  Google Scholar 

  • Lena C, Changeux JP, Mulle C (1993) Evidence for “preterminal” nicotinic receptors on GABAer-gic axons in the rat interpeduncular nucleus. J Neurosci 13:2680–2688

    PubMed  CAS  Google Scholar 

  • Li MD, Kane JK, Wang J, Ma JZ (2004) Time-dependent changes in transcriptional profiles within five rat brain regions in response to nicotine treatment. Brain Res Mol Brain Res 132:168–180

    Article  PubMed  CAS  Google Scholar 

  • Lippiello PM, Sears SB, Fernandes KG (1987) Kinetics and mechanism of l-[3H]nicotine binding to putative high affinity receptor sites in rat brain. Mol Pharmacol 31:392–400

    PubMed  CAS  Google Scholar 

  • Lu Y, Grady S, Marks MJ, Picciotto M, Changeux JP, Collins AC (1998) Pharmacological characterization of nicotinic receptor-stimulated GABA release from mouse brain synaptosomes. J Pharmacol Exp Ther 287:648–657

    PubMed  CAS  Google Scholar 

  • Luetje CW, Patrick J (1991) Both alpha- and beta-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J Neurosci 11:837–845

    PubMed  CAS  Google Scholar 

  • Mameli-Engvall M, Evrard A, Pons S, Maskos U, Svensson TH, Changeux JP, Faure P (2006) Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 50:911–921

    Article  PubMed  CAS  Google Scholar 

  • Mansvelder HD, McGehee DS (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27:349–357

    Article  PubMed  CAS  Google Scholar 

  • Mansvelder HD, McGehee DS (2002) Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 53:606–617

    Article  PubMed  CAS  Google Scholar 

  • Mansvelder HD, De Rover M, McGehee DS, Brussaard AB (2003) Cholinergic modulation of dopaminergic reward areas: upstream and downstream targets of nicotine addiction. Eur J Pharmacol 480:117–123

    Article  PubMed  CAS  Google Scholar 

  • Mao D, Perry DC, Yasuda RP, Wolfe BB, Kellar KJ (2008) The alpha4beta2alpha5 nicotinic cholinergic receptor in rat brain is resistant to up-regulation by nicotine in vivo. J Neurochem 104:446–456

    PubMed  CAS  Google Scholar 

  • Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M (2002) Direct evidence that release-stimulating alpha7* nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem 80:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ, Burch JB, Collins AC (1983) Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther 226:817–825

    PubMed  CAS  Google Scholar 

  • Marks MJ, Grady SR, Collins AC (1993) Downregulation of nicotinic receptor function after chronic nicotine infusion. J Pharmacol Exp Ther 266:1268–1276

    PubMed  CAS  Google Scholar 

  • Marshall DL, Redfern PH, Wonnacott S (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 68:1511–1519

    PubMed  CAS  Google Scholar 

  • Marubio LM, Gardier AM, Durier S, David D, Klink R, Arroyo-Jimenez MM, McIntosh JM, Rossi F, Champtiaux N, Zoli M, Changeux JP (2003) Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors. Eur J Neurosci 17:1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP, Evrard A, Cazala P, Cormier A, Mameli-Engvall M, Dufour N, Cloez-Tayarani I, Bemelmans AP, Mallet J, Gardier AM, David V, Faure P, Granon S, Changeux JP (2005) Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436:103–107

    Article  PubMed  CAS  Google Scholar 

  • Maskos U (2008) The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology. Br J Pharmacol 153:S438–S445

    Article  PubMed  CAS  Google Scholar 

  • Massey KA, Zago WM, Berg DK (2006) BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons. Mol Cell Neurosci 33:381–388

    Article  PubMed  CAS  Google Scholar 

  • Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM (2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacology 190:269–319

    Article  PubMed  CAS  Google Scholar 

  • McCallum SE, Parameswaran N, Bordia T, Fan H, McIntosh JM, Quik M (2006) Differential regulation of mesolimbic alpha 3/alpha 6 beta 2 and alpha 4 beta 2 nicotinic acetylcholine receptor sites, function after long-term oral nicotine to monkeys. J Pharmacol Exp Ther 318:381–388

    Article  PubMed  CAS  Google Scholar 

  • McKay BE, Placzek AN, Dani JA (2007) Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 74:1120–1133

    Article  PubMed  CAS  Google Scholar 

  • Mena-Segovia J, Winn P, Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev 58:265–271

    Article  PubMed  CAS  Google Scholar 

  • Michael DJ, Wightman RM (1999) Electrochemical monitoring of biogenic amine neurotransmis-sion in real time. J Pharm Biomed Anal 9:33–46

    Article  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955

    Article  PubMed  CAS  Google Scholar 

  • Mogg AJ, Jones FA, Pullar IA, Sharples CG, Wonnacott S (2004) Functional responses and subunit composition of presynaptic nicotinic receptor subtypes explored using the novel agonist 5-iodo-A-85380. Neuropharmacology 47:848–859

    Article  PubMed  CAS  Google Scholar 

  • Molinari EJ, Delbono O, Messi ML, Renganathan M, Arneric SP, Sullivan JP, Gopalakrishnan M (1998) Up-regulation of human alpha7 nicotinic receptors by chronic treatment with activator and antagonist ligands. Eur J Pharmacol 347:131–139

    Article  PubMed  CAS  Google Scholar 

  • Moroni M, Zwart R, Sher E, Cassels BK, Bermudez I (2006) alpha4beta2 nicotinic receptors with high and low acetylcholine sensitivity: pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine. Mol Pharmacol 70:755–768

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini M, Tessari M, Tarter G, Merlo Pich E, Chiamulera C, Bunnemann B (2002) “http://www.ncbi.nlm.nih.gov/pubmed/12431215?ordinalpos=4&itool=EntrezSystem2. PEntrez.Pub-med.Pubmed ResultsPanel.Pubmed DefaultReportPanel.Pubmed RVDocSum” Upregulation of [3H]methyllycaconitine binding sites following continuous infusion of nicotine, without changes of alpha7 or alpha6 subunit mRNA: an autoradiography and in situ hybridization study in rat brain. Eur J Neurosci 16:1633–1646.

    Article  PubMed  Google Scholar 

  • Mugnaini M, Garzotti M, Sartori I, Pilla M, Repeto P, Heidbreder CA, Tessari M (2006) Selective down-regulation of [125I]y(0)-alpha-conotoxin MII binding in rat mesostriatal dopamine pathway following continuous infusion of nicotine. Neuroscience 137:565–572

    Article  PubMed  CAS  Google Scholar 

  • Nakayama H, Numakawa T, Ikeuchi T, Hatanaka H (2001) Nicotine-induced phosphorylation of extracellular signal-regulated protein kinase and CREB in PC12h cells. J Neurochem 79:489–498

    Article  PubMed  CAS  Google Scholar 

  • Nashmi R, Dickinson ME, McKinney S, Jareb M, Labarca C, Fraser SE, Lester HA (2003) Assembly of alpha4beta2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J Neurosci 23:11554–11567

    PubMed  CAS  Google Scholar 

  • Nashmi R, Lester H (2007) Cell autonomy, receptor autonomy, and thermodynamics in nicotine receptor up-regulation. Biochem Pharmacol 74:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Nayak SV, Dougherty JJ, McIntosh JM, Nichols RA (2001) Ca2+ changes induced by different presynaptic nicotinic receptors in separate populations of individual striatal nerve terminals. J Neurochem 76:1860–1870

    Article  PubMed  CAS  Google Scholar 

  • Nelson ME, Kuryatov A, Choi CH, Zhou Y, Lindstrom J (2003) Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Mol Pharmacol 63:332–341

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  PubMed  CAS  Google Scholar 

  • Nisell M, Nomikos GG, Svensson TH (1994) Infusion of nicotine in the ventral tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. Pharmacol Toxicol 75:348–352

    PubMed  CAS  Google Scholar 

  • Nisell M, Nomikos GG, Chergui K, Grillner P, Svensson TH (1997) Chronic nicotine enhances basal and nicotine-induced Fos immunoreactivity preferentially in the medial prefrontal cortex of the rat. Neuropsychopharmacology 17:151–161

    Article  PubMed  CAS  Google Scholar 

  • Nuutinen S, Ekokoski E, Lahdensuo E, Tuominen RK (2006) “http://www.ncbi.nlm.nih. gov/pubmed/16846598?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed Results Panel.Pubmed DefaultReportPanel.Pubmed RVDocSum” Nicotine-induced upregulation of human neuronal nicotinic alpha7-receptors is potentiated by modulation of cAMP and PKC in SH-EP1-halpha7 cells. Eur J Pharmacol 544:21–30.

    Article  PubMed  CAS  Google Scholar 

  • Nuutinen S, Barik J, Jones IW, Wonnacott S (2007) Differential effects of acute and chronic nicotine on Elk-1 in rat hippocampus. Neuroreport 18:121–126

    Article  PubMed  CAS  Google Scholar 

  • Olale F, Gerzanich V, Kuryatov A, Wang F, Lindstrom J (1997) Chronic nicotine exposure differentially affects the function of human alpha3, alpha4, and alpha7 neuronal nicotinic receptor subtypes. J Pharmacol Exp Ther 283:675–683

    PubMed  CAS  Google Scholar 

  • Pagliusi SR, Tessari M, DeVevey S, Chiamulera C, Pich EM (1996) The reinforcing properties of nicotine are associated with a specific patterning of c-fos expression in the rat brain. Eur J Neurosci 8:2247–2256

    Article  PubMed  CAS  Google Scholar 

  • Palma E, Bertrand S, Binzoni T, Bertrand D (1996) Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. J Phys-iol 491:151–161

    CAS  Google Scholar 

  • Panagis G, Nisell M, Nomikos GG, Chergui K, Svensson TH (1996) Nicotine injections into the ventral tegmental area increase locomotion and Fos-like immunoreactivity in the nucleus ac-cumbens of the rat. Brain Res. 730:133–142

    PubMed  CAS  Google Scholar 

  • Papke RL, Jacobs LB, Stokes C (2007) Activation of alpha7 nAChR occurs with low fractional occupancy of the agonist binding sites. Soc Neurosci Abst 37:574.9

    Google Scholar 

  • Pauly JR, Marks MJ, Gross SD, Collins AC (1991) An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment. J Pharmacol Exp Ther 258:1127–1136

    PubMed  CAS  Google Scholar 

  • Peng X, Gerzanich V, Anand R, Whiting PJ, Lindstrom J (1994) Nicotine-induced increase in neu-ronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol Pharmacol 46:523–530

    PubMed  CAS  Google Scholar 

  • Peters JA, Carland JE, Cooper MA, Livesey MR, Deeb TZ, Hales TG, Lambert JJ (2006) Novel structural determinants of single-channel conductance in nicotinic acetylcholine and 5-hydroxytryptamine type-3 receptors. Biochem Soc Trans 34(5):882–886

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  PubMed  CAS  Google Scholar 

  • Pich EM, Pagliusi SR, Tessari M, Talabot-Ayer D, Hooft v H, Chiamulera C (1997) Common neural substrates for the addictive properties of nicotine and cocaine. Science 275:83–86

    Article  PubMed  CAS  Google Scholar 

  • Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine Activates and Desensitizes Midbrain Dopamine Neurons. Nature 390:401–404

    Article  PubMed  CAS  Google Scholar 

  • Pietilä K, Ahtee L (2000) Chronic nicotine administration in the drinking water affects the striatal dopamine in mice. Pharmacol Biochem Behav 66:95–103

    Article  PubMed  Google Scholar 

  • Puttfarcken PS, Jacobs I, Faltynek CR (2000) Characterization of nicotinic acetylcholine receptor-mediated [3H]-dopamine release from rat cortex and striatum. Neuropharmacology 39:2673–2680

    Article  PubMed  CAS  Google Scholar 

  • Quik M, Parameswaran N, McCallum SE, Bordia T, Bao S, McCormack A, Kim A, Tyndale RF, Langston JW, Di Monte DA (2006) Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. J Neurochem 98:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Raiteri L, Raiteri M (2000) Synaptosomes still viable after 25 years of superfusion. Neurochem Res 25:1265–1274

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A, Role L (1996) Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380:347–351

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen BA, Perry DC (2006) An autoradiographic analysis of [125I]alpha-bungarotoxin binding in rat brain after chronic nicotine exposure. Neurosci Lett 404:9–14

    Article  PubMed  CAS  Google Scholar 

  • Reuben M, Clarke PB (2000) Nicotine-evoked [3H]5-hydroxytryptamine release from rat striatal synaptosomes. Neuropharmacology 39:290–299

    Article  PubMed  CAS  Google Scholar 

  • Rezvani K, Teng Y, Shim D, De Biasi M (2007) Nicotine regulates multiple synaptic proteins by inhibiting proteasomal activity. J Neurosci 27:10508–10519

    Article  PubMed  CAS  Google Scholar 

  • Ridley DL, Rogers A, Wonnacott S (2001) Differential effects of chronic drug treatment on alpha3*, alpha7 nicotinic receptor binding sites, in hippocampal neurones and sh-sy5y cells. Br J Pharmacol 133:1286–1295

    Article  PubMed  CAS  Google Scholar 

  • Ridley DL, Pakkanen J, Wonnacott S (2002) Effects of chronic drug treatments on increases in intracellular calcium mediated by nicotinic acetylcholine receptors in SH-SY5Y cells. Br J Pharmacol 135:1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Robinson SF, Pauly JR, Marks MJ, Collins AC (1994) An analysis of response to nicotine infusion using an automated radiotelemetry system. Psychopharmacology 115:115–120

    Article  PubMed  CAS  Google Scholar 

  • Role LW, Berg DK (1996) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16:1077–1085

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Behm FM, Westman EC, Coleman RE (1999) Arterial nicotine kinetics during cigarette smoking and intravenous nicotine administration: implications for addiction. Drug Alcohol Depend 56:99–107

    Article  PubMed  CAS  Google Scholar 

  • Rousseau SJ, Jones IW, Pullar IA, Wonnacott S (2005) Presynaptic alpha7 and non-alpha7 nico-tinic acetylcholine receptors modulate [3H]d-aspartate release from rat frontal cortex in vitro. Neuropharmacology 49:59–72

    Article  PubMed  CAS  Google Scholar 

  • Rowell PP, Li M (1997) Dose-response relationship for nicotine-induced up-regulation of rat brain nicotinic receptors. J Neurochem 68:1982–1989

    Article  PubMed  CAS  Google Scholar 

  • Rowell PP, Hurst HE, Marlowe C, Bennett BD (1983) Oral administration of nicotine: its uptake and distribution after chronic administration to mice. J Pharmacol Methods 9:249–261

    Article  PubMed  CAS  Google Scholar 

  • Russell MAH (1990) Nicotine intake and its control over smoking. In: Wonnacott S, Russell MAH, Stolerman IP (eds) Nicotine psychopharmacology, molecular, cellular and behavioural aspects. Oxford University Press, New York, pp 374–418

    Google Scholar 

  • Sakmann B (2006) Patch pipettes are more useful than initially thought: simultaneous pre- and postsynaptic recording from mammalian CNS synapses in vitro and in vivo. Pflugers Arch 453:249–259

    Article  PubMed  CAS  Google Scholar 

  • Sallette J, Bohler S, Benoit P, Soudant M, Pons S, Le Novere N, Changeux JP, Corringer PJ (2004) An extracellular protein microdomain controls up-regulation of neuronal nicotinic acetyl-choline receptors by nicotine. J Biol Chem 279:18767–18775

    Article  PubMed  CAS  Google Scholar 

  • Sallette J, Pons S, Devillers-Thiery A, Soudant M, Prado DC, Changeux JP, Corringer PJ (2005) Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron 46:595–607

    Article  PubMed  CAS  Google Scholar 

  • Salminen O, Seppä T, Gäddnäs H, Ahtee L (1999) The effects of acute nicotine on the metabolism of dopamine and the expression of Fos protein in striatal and limbic brain areas of rats during chronic nicotine infusion and its withdrawal. J Neurosci 19:8145–8151

    PubMed  CAS  Google Scholar 

  • Salminen O, Drapeau JA, McIntosh JM, Collins AC, Marks MJ, Grady SR (2007) Pharmacology of alpha-conotoxin MII-sensitive subtypes of nicotinic acetylcholine receptors isolated by breeding of null mutant mice. Mol Pharmacol 71:1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Sanderson EM, Drasdo AL, McCrea K, Wonnacott S (1993) Upregulation of nicotinic receptors following continuous infusion of nicotine is brain-region-specific. Brain Res 617:349–352

    Article  PubMed  CAS  Google Scholar 

  • Saal D, Dong Y, Bonci A, Malenka RC (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577–582

    Article  PubMed  CAS  Google Scholar 

  • Schilström B, Fagerquist MV, Zhang X, Hertel P, Panagis G, Nomikos GG, Svensson TH (2000) Putative role of presynaptic alpha7* nicotinic receptors in nicotine stimulated increases of extracellular levels of glutamate and aspartate in the ventral tegmental area. Synapse 38:375–383

    Article  PubMed  Google Scholar 

  • Schilström B, Rawal N, Mameli-Engvall M, Nomikos GG, Svensson TH (2003) Dual effects of nicotine on dopamine neurons mediated by different nicotinic receptor subtypes. Int J Neu-ropsychopharmacol 6:1–11

    Google Scholar 

  • Schwartz RD, Kellar KJ (1983) Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science 220:214–216

    Article  PubMed  CAS  Google Scholar 

  • Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  CAS  Google Scholar 

  • Sharma G, Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38:929–939

    Article  PubMed  CAS  Google Scholar 

  • Sharma G, Grybko M, Vijayaraghavan S (2008) Action potential-independent and nicotinic receptor-mediated concerted release of multiple quanta at hippocampal CA3-mossy fiber synapses. J Neurosci 28:2563–2575

    Article  PubMed  CAS  Google Scholar 

  • Shoaib M, Stolerman IP (1999) Plasma nicotine and cotinine levels following intravenous nicotine self-administration in rats. Psychopharmacology 143:318–321

    Article  PubMed  CAS  Google Scholar 

  • Shram MJ, Funk D, Li Z, Lê AD (2007) Acute nicotine enhances c-fos mRNA expression differentially in reward-related substrates of adolescent and adult rat brain. Neurosci Lett 418:286–291

    Article  PubMed  CAS  Google Scholar 

  • Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, Kits KS, Lodder H, van der Schors RC, van Elk R, Sorgedrager B, Brejc K, Sixma TK, Geraerts WP (2001) A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411:261–268

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom K, Qin W, Williams H, Taylor DA, McMillen BA (2007) Nicotine increases FosB expression within a subset of reward- and memory-related brain regions during both peri- and post-adolescence. Psychopharmacology 191:891–897

    Article  PubMed  CAS  Google Scholar 

  • Sokolova E, Matteoni C, Nistri A (2005) Desensitization of neuronal nicotinic receptors of human neuroblastoma sh-sy5y cells during short or long exposure to nicotine. Br J Pharmacol 146:1087–1095

    Article  PubMed  CAS  Google Scholar 

  • Soliakov L, Gallagher T, Wonnacott S (1995) Anatoxin-a-evoked [3H]dopamine release from rat striatal synaptosomes. Neuropharmacology 34:1535–1541

    Article  PubMed  CAS  Google Scholar 

  • Soliakov L, Wonnacott S (1996) Voltage-sensitive Ca2+ channels involved in nicotinic receptor-mediated [3H]dopamine release from rat striatal synaptosomes. J Neurochem 67:163–170

    PubMed  CAS  Google Scholar 

  • Sorge R, Clarke PB (2007) Slow/low intravenous infusions of nicotine in rats: a better model of smoking? Soc Neurosci Abst 37:273.17

    Google Scholar 

  • Staley JK, Krishnan-Sarin S, Cosgrove KP, Krantzler E, Frohlich E, Perry E, Dubin JA, Estok K, Brenner E, Baldwin RM, Tamagnan GD, Seibyl JP, Jatlow P, Picciotto MR, London ED, O'Malley S, van Dyck CH (2006) Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 26:8707–8714

    Article  PubMed  CAS  Google Scholar 

  • Steiner RC, Heath CJ, Picciotto MR (2007) Nicotine-induced phosphorylation of ERK in mouse primary cortical neurons: evidence for involvement of glutamatergic signaling and CaMKII. J Neurochem 103:666–678

    Article  PubMed  CAS  Google Scholar 

  • Teaktong T, Graham AJ, Johnson M, Court JA, Perry EK (2004) Selective changes in nicotinic acetylcholine receptor subtypes related to tobacco smoking: an immunohistochemical study. Neuropathol Appl Neurobiol 30:243–254

    Article  PubMed  CAS  Google Scholar 

  • Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355–367

    Article  PubMed  CAS  Google Scholar 

  • Tsuneki H, Klink R, Léna C, Korn H, Changeux JP (2000) Calcium mobilization elicited by two types of nicotinic acetylcholine receptors in mouse substantia nigra pars compacta. Eur J Neu-rosci 12:2475–2485

    Article  CAS  Google Scholar 

  • Tumkosit P, Kuryatov A, Luo J, Lindstrom J (2006) Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines. Mol Pharmacol 70:1358–1368

    Article  PubMed  CAS  Google Scholar 

  • Turner DM (1975) Influence of route of administration on metabolism of [14C]nicotine in four species. Xenobiotica 5:553–561

    Article  PubMed  CAS  Google Scholar 

  • Turner TJ (2004) Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles. J Neurosci 24:11328–11336

    Article  PubMed  CAS  Google Scholar 

  • Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43

    Article  PubMed  CAS  Google Scholar 

  • Unwin N (2003) Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett 555:91–95

    Article  PubMed  CAS  Google Scholar 

  • Vadasz C, Saito M, O'Brien D, Zavadil J, Morahan G, Chakraborty G, Wang R (2007) Ventral tegmental transcriptome response to intermittent nicotine treatment and withdrawal in BALB/cJ, C57BL/6ByJ, and quasi-congenic RQI mice. Neurochem Res 32:457–480

    Article  PubMed  CAS  Google Scholar 

  • Valjent E, Pagès C, Hervé D, Girault JA, Caboche J (2004) Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 19:1826–1836

    Article  PubMed  Google Scholar 

  • Valjent E, Aubier B, Corbillé AG, Brami-Cherrier K, Caboche J, Topilko P, Girault JA, Hervé D (2006) Plasticity-associated gene Krox24/Zif268 is required for long-lasting behavioral effects of cocaine. J Neurosci 26:4956–4960

    Article  PubMed  CAS  Google Scholar 

  • Vallejo YF, Buisson B, Bertrand D, Green WN (2005) Chronic nicotine exposure upregulates nico-tinic receptors by a novel mechanism. J Neurosci 25:5563–5572

    Article  PubMed  CAS  Google Scholar 

  • Vernino S, Amador M, Luetje CW, Patrick J, Dani JA (1992) Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8:127–134

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES, Lendvai B (1999) Modulatory role of presynaptic nicotinic receptors in synaptic and non-synaptic chemical communication in the central nervous system. Brain Res Brain Res Rev 30:219–235

    Article  PubMed  CAS  Google Scholar 

  • Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL (2001) Relapse to cocaine-seeking after hip-pocampal theta burst stimulation. Science 292:1175–1178

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Gutala R, Hwang YY, Kim JM, Konu O, Ma JZ, Li MD (2008) Strain- and region-specific gene expression profiles in mouse brain in response to chronic nicotine treatment. Genes Brain Behav 7:78–87

    PubMed  Google Scholar 

  • Walsh H, Govind AP, Mastro R, Hoda JC, Bertrand D, Vallejo Y, Green WN (2008) Up-regulation of nicotinic receptors by nicotine varies with receptor subtype. J Biol Chem 283:6022–6032

    Article  PubMed  CAS  Google Scholar 

  • Weinshenker D, Schroeder JP (2007) There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology 32:1433–1451

    Article  PubMed  CAS  Google Scholar 

  • Westerink BH (2000) Analysis of biogenic amines in microdialysates of the brain. J Chromatogr B Biomed Sci Appl 747:21–32

    Article  PubMed  CAS  Google Scholar 

  • Whiteaker P, Sharples CG, Wonnacott S (1998) Agonist-induced up-regulation of alpha4beta2 nicotinic acetylcholine receptors in M10 cells: pharmacological and spatial definition. Mol Pharmacol 53:950–962

    PubMed  CAS  Google Scholar 

  • Wilkie GI, Hutson P, Sullivan JP, Wonnacott S (1996) Pharmacological characterization of a nico-tinic autoreceptor in rat hippocampal synaptosomes. Neurochem Res 21:1141–1148

    Article  PubMed  CAS  Google Scholar 

  • Wilson GG, Karlin A (1998) The location of the gate in the acetylcholine receptor channel. Neuron 20:1269–1281

    Article  PubMed  CAS  Google Scholar 

  • Wonnacott S (1990) The paradox of nicotinic acetylcholine receptor upregulation by nicotine. Trends Pharmacol Sci 11:216–219

    Article  PubMed  CAS  Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98

    Article  PubMed  CAS  Google Scholar 

  • Wonnacott S, Mogg A, Bradly A, Jones IW (2002) Presynaptic nicotinic acetylcholine receptors: subtypes mediating neurotransmitter release. In: Levin ED (ed) Nicotine and the nervous system. CRC, Boca Raton, pp 29–50

    Google Scholar 

  • Wonnacott S, Sidhpura N, Balfour DJ (2005) Nicotine: from molecular mechanisms to behaviour. Curr Opin Pharmacol 5:53–59

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Kellar KJ (2004) The comparative pharmacology and up-regulation of rat neuronal nico-tinic receptor subtype binding sites stably expressed in transfected mammalian cells. J Pharmacol Exp Ther 10:98–107

    Article  CAS  Google Scholar 

  • Yu ZJ, Wecker L (1994) Chronic nicotine administration differentially affects neurotransmitter release from rat striatal slices. J Neurochem 63:186–194

    PubMed  CAS  Google Scholar 

  • Zanetti L, Picciotto MR, Zoli M (2007) Differential effects of nicotinic antagonists perfused into the nucleus accumbens or the ventral tegmental area on cocaine-induced dopamine release in the nucleus accumbens of mice. Psychopharmacology 190:189–199

    Article  PubMed  CAS  Google Scholar 

  • Zhai H, Li Y, Wang X, Lu L (2008) Drug-induced alterations in the extracellular signal-regulated kinase (ERK) signalling pathway: implications for reinforcement and reinstatement. Cell Mol Neurobiol 28:157–172

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhang L, Jiao H, Zhang Q, Zhang D, Lou D, Katz JL, Xu M (2006) c-Fos facilitates the acquisition and extinction of cocaine-induced persistent changes. J Neurosci 26:13287–13296

    Article  PubMed  CAS  Google Scholar 

  • Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4:1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Zoli M, Moretti M, Zanardi A, McIntosh JM, Clementi F, Gotti C (2002) Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci 22:8785–8789

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barik, J., Wonnacott, S. (2009). Molecular and Cellular Mechanisms of Action of Nicotine in the CNS. In: Henningfield, J.E., London, E.D., Pogun, S. (eds) Nicotine Psychopharmacology. Handbook of Experimental Pharmacology, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69248-5_7

Download citation

Publish with us

Policies and ethics