Skip to main content

Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics

  • Chapter
  • First Online:
Book cover Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 806))

Abstract

Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein–protein interactions, and protein turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    CAS  Google Scholar 

  2. Ross PL (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    CAS  Google Scholar 

  3. Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez J (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80:2921–2931

    CAS  Google Scholar 

  4. Stewart II, Thomson T, Figeys D (2001) 18O labeling: a tool for proteomics. Rapid Commun Mass Spectrom 15:2456–2465

    CAS  Google Scholar 

  5. Ong S, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    CAS  Google Scholar 

  6. Ong S, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29:124–130

    CAS  Google Scholar 

  7. Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96:6591–6596

    CAS  Google Scholar 

  8. Bindschedler LV, Cramer R (2011) Fully automated software solution for protein quantitation by global metabolic labeling with stable isotopes. Rapid Commun Mass Spectrom 25:1461–1471

    CAS  Google Scholar 

  9. Manning G, Plowman GD, Hunter T, Sudarsanam S (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27:514–520

    CAS  Google Scholar 

  10. Ibarrola N, Kalume DE, Gronborg M, Iwahori A, Pandey A (2003) A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal Chem 75:6043–6049

    CAS  Google Scholar 

  11. Liang X, Hajivandi M, Veach D, Wisniewski D, Clarkson B, Resh MD, Pope RM (2006) Quantification of change in phosphorylation of BCR-ABL kinase and its substrates in response to Imatinib treatment in human chronic myelogenous leukemia cells. Proteomics 6:4554–4564

    CAS  Google Scholar 

  12. Park K, Mohapatra DP, Misonou H, Trimmer JS (2006) Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science 313:976–979

    CAS  Google Scholar 

  13. Wisniewski JR, Zougman A, Krüger S, Ziółkowski P, Pudełko M, Bebenek M, Mann M (2008) Constitutive and dynamic phosphorylation and acetylation sites on NUCKS, a hypermodified nuclear protein, studied by quantitative proteomics. Proteins 73:710–718

    CAS  Google Scholar 

  14. Lu X, Hamrahi VF, Tompkins RG, Fischman AJ (2009) Effect of insulin levels on the phosphorylation of specific amino acid residues in IRS-1: implications for burn-induced insulin resistance. Int J Mol Med 24:531–538

    CAS  Google Scholar 

  15. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    CAS  Google Scholar 

  16. Rogers LD, Foster LJ (2009) Phosphoproteomics—finally fulfilling the promise? Mol Biosyst 5:1122–1129

    CAS  Google Scholar 

  17. Nilsson CL (2012) Advances in quantitative phosphoproteomics. Anal Chem 84:735–746

    CAS  Google Scholar 

  18. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4:231–237

    CAS  Google Scholar 

  19. Stensballe A, Andersen S, Jensen ON (2001) Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 1:207–222

    CAS  Google Scholar 

  20. Ficarro S, Chertihin O, Westbrook VA, White F, Jayes F, Kalab P, Marto JA, Shabanowitz J, Herr JC, Hunt DF, Visconti PE (2003) Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem 278:11579–11589

    CAS  Google Scholar 

  21. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    CAS  Google Scholar 

  22. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha X, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94–101

    CAS  Google Scholar 

  23. Zhang G, Neubert TA (2011) Comparison of three quantitative phosphoproteomic strategies to study receptor tyrosine kinase signaling. J Proteome Res 10:5454–5462

    CAS  Google Scholar 

  24. Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, Jensen ON (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4:310–327

    CAS  Google Scholar 

  25. Platt MD, Salicioni AM, Hunt DF, Visconti PE (2009) Use of differential isotopic labeling and mass spectrometry to analyze capacitation-associated changes in the phosphorylation status of mouse sperm proteins. J Proteome Res 8:1431–1440

    CAS  Google Scholar 

  26. Schreiber TB, Mäusbacher N, Soroka J, Wandinger SK, Buchner J, Daub H (2012) Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae. J Proteome Res 11:2397–2408

    CAS  Google Scholar 

  27. Chen C, Wu D, Zhang L, Zhao Y, Guo L (2012) Comparative phosphoproteomics studies of macrophage response to bacterial virulence effectors. J Proteomics 77:251–261

    CAS  Google Scholar 

  28. Xiao K, Sun J, Kim J, Rajagopal S, Zhai B, Villén J, Haas W, Kovacs JJ, Shukla AK, Hara MR, Hernandez M, Lachmann A, Zhao S, Lin Y, Cheng Y, Mizuno K, Ma’ayan A, Gygi SP, Lefkowitz RJ (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci 107:15299–15304

    CAS  Google Scholar 

  29. Hilger M, Bonaldi T, Gnad F, Mann M (2009) Systems-wide analysis of a phosphatase knock-down by quantitative proteomics and phosphoproteomics. Mol Cell Proteomics 8:1908–1920

    CAS  Google Scholar 

  30. Urbaniak MD, Martin DMA, Ferguson MAJ (2013) Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J Proteome Res 12:2233–2244

    CAS  Google Scholar 

  31. Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8:2796–2808

    CAS  Google Scholar 

  32. Liang X, Fonnum G, Hajivandi M, Stene T, Kjus NH, Ragnhildstveit E, Amshey JW, Predki P, Pope RM (2007) Quantitative comparison of IMAC and TiO2 surfaces used in the study of regulated, dynamic protein phosphorylation. J Am Soc Mass Spectrom 18:1932–1944

    CAS  Google Scholar 

  33. Blagoev B, Ong S, Kratchmarova I, Mann M (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22:1139–1145

    CAS  Google Scholar 

  34. Bose R, Molina H, Patterson AS, Bitok JK, Periaswamy B, Bader JS, Pandey A, Cole PA (2006) Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc Natl Acad Sci U S A 103:9773–9778

    CAS  Google Scholar 

  35. Hinsby AM, Olsen JV, Mann M (2004) Tyrosine phosphoproteomics of fibroblast growth factor signaling: a role for insulin receptor substrate-4. J Biol Chem 279:46438–46447

    CAS  Google Scholar 

  36. Cunningham DL, Sweet SMM, Cooper HJ, Heath JK (2010) Differential phosphoproteomics of fibroblast growth factor signaling: identification of Src family kinase-mediated phosphorylation events. J Proteome Res 9:2317–2328

    CAS  Google Scholar 

  37. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308:1472–1477

    CAS  Google Scholar 

  38. Zhang G, Spellman DS, Skolnik EY, Neubert TA (2006) Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC). J Proteome Res 5:581–588

    CAS  Google Scholar 

  39. Krüger M, Kratchmarova I, Blagoev B, Tseng Y, Kahn CR, Mann M (2008) Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci 105:2451–2456

    Google Scholar 

  40. Spellman DS, Deinhardt K, Darie CC, Chao MV, Neubert TA (2008) Stable isotopic labeling by amino acids in cultured primary neurons: application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Mol Cell Proteomics 7:1067–1076

    CAS  Google Scholar 

  41. Hammond DE, Hyde R, Kratchmarova I, Beynon RJ, Blagoev B, Clague MJ (2010) Quantitative analysis of HGF and EGF-dependent phosphotyrosine signaling networks. J Proteome Res 9:2734–2742

    CAS  Google Scholar 

  42. Osinalde N, Moss H, Arrizabalaga O, Omaetxebarria MJ, Blagoev B, Zubiaga AM, Fullaondo A, Arizmendi JM, Kratchmarova I (2011) Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics. J Proteomics 75:177–191

    CAS  Google Scholar 

  43. Størvold GL, Landskron J, Strozynski M, Arntzen MØ, Koehler CJ, Kalland ME, Taskén K, Thiede B (2013) Quantitative profiling of tyrosine phosphorylation revealed changes in the activity of the T cell receptor signaling pathway upon cisplatin-induced apoptosis. J Proteomics 91:344–357

    Google Scholar 

  44. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4:1240–1250

    CAS  Google Scholar 

  45. Zhang L, Yu C, Vasquez FE, Galeva N, Onyango I, Swerdlow RH, Dobrowsky RT (2010) Hyperglycemia alters the schwann cell mitochondrial proteome and decreases coupled respiration in the absence of superoxide production. J Proteome Res 9:458–471

    CAS  Google Scholar 

  46. Matsumura T, Oyama M, Kozuka-Hata H, Ishikawa K, Inoue T, Muta T, Semba K, Inoue J (2010) Identification of BCAP-(L) as a negative regulator of the TLR signaling-induced production of IL-6 and IL-10 in macrophages by tyrosine phosphoproteomics. Biochem Biophys Res Commun 400:265–270

    CAS  Google Scholar 

  47. Brockmeyer C, Paster W, Pepper D, Tan CP, Trudgian DC, McGowan S, Fu G, Gascoigne NRJ, Acuto O, Salek M (2011) T cell receptor (TCR)-induced tyrosine phosphorylation dynamics identifies THEMIS as a new TCR signalosome component. J Biol Chem 286:7535–7547

    CAS  Google Scholar 

  48. Azimifar SB, Böttcher RT, Zanivan S, Grashoff C, Krüger M, Legate KR, Mann M, Fässler R (2012) Induction of membrane circular dorsal ruffles requires co-signalling of integrin-ILK-complex and EGF receptor. J Cell Sci 125:435–448

    CAS  Google Scholar 

  49. Mäusbacher N, Schreiber TB, Machatti M, Schaab C, Daub H (2012) Proteome-wide analysis of temporal phosphorylation dynamics in lysophosphatidic acid-induced signaling. Proteomics 12:3485–3498

    Google Scholar 

  50. Pan X, Whitten DA, Wu M, Chan C, Wilkerson CG, Pestka JJ (2013) Global protein phosphorylation dynamics during deoxynivalenol-induced ribotoxic stress response in the macrophage. Toxicol Appl Pharmacol 268:201–211

    CAS  Google Scholar 

  51. Zhou Q, Chaerkady R, Shaw PG, Kensler TW, Pandey A, Davidson NE (2010) Screening for therapeutic targets of vorinostat by SILAC-based proteomic analysis in human breast cancer cells. Proteomics 10:1029–1039

    CAS  Google Scholar 

  52. Bennetzen MV, Larsen DH, Dinant C, Watanabe S, Bartek J, Lukas J, Andersen JS (2013) Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response. Cell Cycle 12:1688–1695

    CAS  Google Scholar 

  53. Wu Q, Xu W, Cao L, Li X, He T, Wu Z, Li W (2013) SAHA treatment reveals the link between histone lysine acetylation and proteome in nonsmall cell lung cancer A549 Cells. J Proteome Res 12:4064–4073

    CAS  Google Scholar 

  54. Meierhofer D, Wang X, Huang L, Kaiser P (2008) Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7:4566–4576

    CAS  Google Scholar 

  55. Akimov V, Rigbolt KTG, Nielsen MM, Blagoev B (2011) Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics. Mol Biosyst 7:3223–3233

    CAS  Google Scholar 

  56. Na CH, Peng J (2012) Analysis of ubiquitinated proteome by quantitative mass spectrometry. Methods Mol Biol 893:417–429

    CAS  Google Scholar 

  57. Udeshi ND, Mertins P, Svinkina T, Carr SA (2013) Large-scale identification of ubiquitination sites by mass spectrometry. Nat Protoc 8:1950–1960

    CAS  Google Scholar 

  58. Anania VG, Pham VC, Huang X, Masselot A, Lill JR, Kirkpatrick DS (2014) Peptide level immunoaffinity enrichment enhances ubiquitination site identification on individual proteins. Mol Cell Proteomics 13(1):145–156

    CAS  Google Scholar 

  59. Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA (2012) Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics 11:148–159

    CAS  Google Scholar 

  60. Ong S, Mittler G, Mann M (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1:119–126

    CAS  Google Scholar 

  61. Ong S, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660

    CAS  Google Scholar 

  62. Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA (2010) In vivo residue-specific histone methylation dynamics. J Biol Chem 285:3341–3350

    CAS  Google Scholar 

  63. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T (2010) Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143:470–484

    CAS  Google Scholar 

  64. Cao X, Zee BM, Garcia BA (2013) Heavy methyl-SILAC labeling coupled with liquid chromatography and high-resolution mass spectrometry to study the dynamics of site-specific histone methylation. Methods Mol Biol 977:299–313

    CAS  Google Scholar 

  65. Wang Z, Pandey A, Hart GW (2007) Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol Cell Proteomics 6:1365–1379

    CAS  Google Scholar 

  66. Ostasiewicz P, Zielinska DF, Mann M, Wisniewski JR (2010) Proteome, phosphoproteome, and N-glycoproteome are quantitatively preserved in formalin-fixed paraffin-embedded tissue and analyzable by high-resolution mass spectrometry. J Proteome Res 9:3688–3700

    CAS  Google Scholar 

  67. Palmisano G, Lendal SE, Larsen MR (2011) Titanium dioxide enrichment of sialic acid-containing glycopeptides. Methods Mol Biol 753:309–322

    CAS  Google Scholar 

  68. Boersema PJ, Geiger T, Wisniewski JR, Mann M (2013) Quantification of the N-glycosylated secretome by super-SILAC during breast cancer progression and in human blood samples. Mol Cell Proteomics 12:158–171

    Google Scholar 

  69. Taga Y, Kusubata M, Ogawa-Goto K, Hattori S (2013) Site-specific quantitative analysis of overglycosylation of collagen in osteogenesis imperfecta using hydrazide chemistry and SILAC. J Proteome Res 12:2225–2232

    CAS  Google Scholar 

  70. Bonenfant D, Towbin H, Coulot M, Schindler P, Mueller DR, van Oostrum J (2007) Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry. Mol Cell Proteomics 6:1917–1932

    CAS  Google Scholar 

  71. Cuomo A, Moretti S, Minucci S, Bonaldi T (2011) SILAC-based proteomic analysis to dissect the “histone modification signature” of human breast cancer cells. Amino Acids 41:387–399

    CAS  Google Scholar 

  72. Guan X, Rastogi N, Parthun MR, Freitas MA (2013) Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS). Mol Cell Proteomics 12:2048–2059

    CAS  Google Scholar 

  73. Tackett AJ, DeGrasse JA, Sekedat MD, Oeffinger M, Rout MP, Chait BT (2005) I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J Proteome Res 4:1752–1756

    CAS  Google Scholar 

  74. Zhong J, Chaerkady R, Kandasamy K, Gucek M, Cole RN, Pandey A (2011) The interactome of a PTB domain-containing adapter protein, Odin, revealed by SILAC. J Proteomics 74:294–303

    CAS  Google Scholar 

  75. Foster LJ, Rudich A, Talior I, Patel N, Huang X, Furtado LM, Bilan PJ, Mann M, Klip A (2006) Insulin-dependent interactions of proteins with GLUT4 revealed through stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 5:64–75

    CAS  Google Scholar 

  76. Hanke S, Mann M (2009) The phosphotyrosine interactome of the insulin receptor family and its substrates IRS-1 and IRS-2. Mol Cell Proteomics 8:519–534

    CAS  Google Scholar 

  77. Dobreva I, Fielding A, Foster LJ, Dedhar S (2008) Mapping the integrin-linked kinase interactome using SILAC. J Proteome Res 7:1740–1749

    CAS  Google Scholar 

  78. Sharma K, Kumar C, Kéri G, Breitkopf SB, Oppermann FS, Daub H (2010) Quantitative analysis of kinase-proximal signaling in lipopolysaccharide-induced innate immune response. J Proteome Res 9:2539–2549

    CAS  Google Scholar 

  79. Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, Eng J, Aebersold R (2003) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33:349–355

    CAS  Google Scholar 

  80. Kito K, Kawaguchi N, Okada S, Ito T (2008) Discrimination between stable and dynamic components of protein complexes by means of quantitative proteomics. Proteomics 8:2366–2370

    CAS  Google Scholar 

  81. Synowsky SA, van Wijk M, Raijmakers R, Heck AJR (2009) Comparative multiplexed mass spectrometric analyses of endogenously expressed yeast nuclear and cytoplasmic exosomes. J Mol Biol 385:1300–1313

    CAS  Google Scholar 

  82. Chao JT, Foster LJ, Loewen CJR (2009) Identification of protein complexes with quantitative proteomics in S. cerevisiae. J Vis Exp (25). pii: 1225

    Google Scholar 

  83. Bard-Chapeau EA, Gunaratne J, Kumar P, Chua BQ, Muller J, Bard FA, Blackstock W, Copeland NG, Jenkins NA (2013) EVI1 oncoprotein interacts with a large and complex network of proteins and integrates signals through protein phosphorylation. Proc Natl Acad Sci 110:E2885–E2894

    CAS  Google Scholar 

  84. Selbach M, Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3:981–983

    CAS  Google Scholar 

  85. Ge F, Li W, Bi L, Tao S, Zhang Z, Zhang X (2010) Identification of novel 14-3-3ζ interacting proteins by quantitative immunoprecipitation combined with knockdown (QUICK). J Proteome Res 9:5848–5858

    CAS  Google Scholar 

  86. Meixner A, Boldt K, Van Troys M, Askenazi M, Gloeckner CJ, Bauer M, Marto JA, Ampe C, Kinkl N, Ueffing M (2011) A QUICK screen for Lrrk2 interaction partners—leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Mol Cell Proteomics 10:M110.001172

    Google Scholar 

  87. Hah N, Kolkman A, Ruhl DD, Pijnappel WWMP, Heck AJR, Timmers HTM, Kraus WL (2010) A role for BAF57 in cell cycle-dependent transcriptional regulation by the SWI/SNF chromatin remodeling complex. Cancer Res 70:4402–4411

    CAS  Google Scholar 

  88. Zheng P, Zhong Q, Xiong Q, Yang M, Zhang J, Li C, Bi L, Ge F (2012) QUICK identification and SPR validation of signal transducers and activators of transcription 3 (Stat3) interacting proteins. J Proteomics 75:1055–1066

    CAS  Google Scholar 

  89. Blagoev B, Kratchmarova I, Ong S, Nielsen M, Foster LJ, Mann M (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 21:315–318

    CAS  Google Scholar 

  90. Belle A, Tanay A, Bitincka L, Shamir R, O’Shea EK (2006) Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci U S A 103:13004–13009

    CAS  Google Scholar 

  91. Doherty MK, Whitehead C, McCormack H, Gaskell SJ, Beynon RJ (2005) Proteome dynamics in complex organisms: using stable isotopes to monitor individual protein turnover rates. Proteomics 5:522–533

    CAS  Google Scholar 

  92. Doherty MK, Hammond DE, Clague MJ, Gaskell SJ, Beynon RJ (2009) Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J Proteome Res 8:104–112

    CAS  Google Scholar 

  93. Milner E, Barnea E, Beer I, Admon A (2006) The turnover kinetics of major histocompatibility complex peptides of human cancer cells. Mol Cell Proteomics 5:357–365

    CAS  Google Scholar 

  94. Cohen LD, Zuchman R, Sorokina O, Müller A, Dieterich DC, Armstrong JD, Ziv T, Ziv NE (2013) Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS ONE 8:e63191

    CAS  Google Scholar 

  95. Pratt JM, Robertson DHL, Gaskell SJ, Riba-Garcia I, Hubbard SJ, Sidhu K, Oliver SG, Butler P, Hayes A, Petty J, Beynon RJ (2002) Stable isotope labelling in vivo as an aid to protein identification in peptide mass fingerprinting. Proteomics 2:157–163

    CAS  Google Scholar 

  96. Cargile BJ, Bundy JL, Grunden AM, Stephenson JL (2004) Synthesis/degradation ratio mass spectrometry for measuring relative dynamic protein turnover. Anal Chem 76:86–97

    CAS  Google Scholar 

  97. Andersen JS, Lam YW, Leung AKL, Ong S, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83

    CAS  Google Scholar 

  98. Cambridge SB, Gnad F, Nguyen C, Bermejo JL, Krüger M, Mann M (2011) Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J Proteome Res 10:5275–5284

    CAS  Google Scholar 

  99. Boisvert F, Ahmad Y, Gierliński M, Charrière F, Lamont D, Scott M, Barton G, Lamond AI (2012) A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics 11:M111.011429

    Google Scholar 

  100. Tilghman RW, Blais EM, Cowan CR, Sherman NE, Grigera PR, Jeffery ED, Fox JW, Blackman BR, Tschumperlin DJ, Papin JA, Parsons JT (2012) Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis. PLoS ONE 7:e37231

    CAS  Google Scholar 

  101. Kristensen LP, Chen L, Nielsen MO, Qanie DW, Kratchmarova I, Kassem M, Andersen JS (2012) Temporal profiling and pulsed SILAC labeling identify novel secreted proteins during ex vivo osteoblast differentiation of human stromal stem cells. Mol Cell Proteomics 11:989–1007

    CAS  Google Scholar 

  102. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Google Scholar 

  103. Schwanhäusser B, Gossen M, Dittmar G, Selbach M (2009) Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9:205–209

    Google Scholar 

  104. Jayapal KP, Sui S, Philp RJ, Kok Y, Yap MGS, Griffin TJ, Hu W (2010) Multitagging proteomic strategy to estimate protein turnover rates in dynamic systems. J Proteome Res 9:2087–2097

    CAS  Google Scholar 

  105. Zhang G, Deinhardt K, Chao MV, Neubert TA (2011) Study of neurotrophin-3 signaling in primary cultured neurons using multiplex stable isotope labeling with amino acids in cell culture. J Proteome Res 10:2546–2554

    CAS  Google Scholar 

  106. Krijgsveld J, Ketting RF, Mahmoudi T, Johansen J, Artal-Sanz M, Verrijzer CP, Plasterk RHA, Heck AJR (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931

    CAS  Google Scholar 

  107. Larance M, Bailly AP, Pourkarimi E, Hay RT, Buchanan G, Coulthurst S, Xirodimas DP, Gartner A, Lamond AI (2011) Stable-isotope labeling with amino acids in nematodes. Nat Methods 8:849–851

    CAS  Google Scholar 

  108. Sury MD, Chen J, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9:2173–2183

    CAS  Google Scholar 

  109. Xu P, Tan H, Duong DM, Yang Y, Kupsco J, Moberg KH, Li H, Jin P, Peng J (2012) Stable isotope labeling with amino acids in Drosophila for quantifying proteins and modifications. J Proteome Res 11:4403–4412

    CAS  Google Scholar 

  110. Krüger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fässler R, Mann M (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Google Scholar 

  111. Wu CC, MacCoss MJ, Howell KE, Matthews DE, Yates JR (2004) Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal Chem 76:4951–4959

    CAS  Google Scholar 

  112. McClatchy DB, Dong M, Wu CC, Venable JD, Yates JR (2007) 15N metabolic labeling of mammalian tissue with slow protein turnover. J Proteome Res 6:2005–2010

    CAS  Google Scholar 

  113. Ishihama Y, Sato T, Tabata T, Miyamoto N, Sagane K, Nagasu T, Oda Y (2005) Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat Biotechnol 23:617–621

    CAS  Google Scholar 

  114. Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7:383–385

    CAS  Google Scholar 

  115. Deeb SJ, D’Souza RCJ, Cox J, Schmidt-Supprian M, Mann M (2012) Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles. Mol Cell Proteomics 11:77–89

    CAS  Google Scholar 

  116. Monetti M, Nagaraj N, Sharma K, Mann M (2011) Large-scale phosphosite quantification in tissues by a spike-in SILAC method. Nat Methods 8:655–658

    CAS  Google Scholar 

  117. Tzouros M, Golling S, Avila D, Lamerz J, Berrera M, Ebeling M, Langen H, Augustin A (2013) Development of a 5-plex SILAC method tuned for the quantitation of tyrosine phosphorylation dynamics. Mol Cell Proteomics 12(11):3339–3349

    CAS  Google Scholar 

  118. Hebert AS, Merrill AE, Stefely JA, Bailey DJ, Wenger CD, Westphall MS, Pagliarini DJ, Coon JJ (2013) Amine-reactive neutron-encoded labels for highly plexed proteomic quantitation. Mol Cell Proteomics 12:3360–3369

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Neubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoedt, E., Zhang, G., Neubert, T.A. (2014). Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_5

Download citation

Publish with us

Policies and ethics