Skip to main content

Magnetic Resonance Relaxation and Quantitative Measurement in the Brain

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 711))

Abstract

Underlying the exquisite soft tissue contrast provided by magnetic resonance imaging are the inherent biophysical processes of relaxation. Through the intricate relationships between tissue microstructure and biochemistry and the longitudinal and transverse relaxation rates, quantitative measurement of these relaxation parameters is informative of tissue change associated with disease, neural plasticity, and other biological processes. Quantitative imaging studies can further facilitate more detailed characterizations of tissue, providing a more direct link between modern MR imaging and classic histochemical and histological studies. In this chapter, we briefly review the biophysical basis of relaxation, introducing and focusing specifically on the T 1, T 2, and T 2 * relaxation times and detail some of the more widely used and clinically feasible techniques for their in vivo measurement. Methods for analyzing relaxation data are covered, and a summary of significant results from reported neuroimaging studies is provided. Finally, the combination of relaxation time data with other quantitative imaging data, including diffusion tensor and magnetization transfer, is examined, with the aim of providing more thorough characterization of brain tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Blinkov, S. M., Glezer, I. I. The Human Brain in Figures and Tables. New York, NY: A Quantitative Handbook. Plenum Press; 1968.

    Google Scholar 

  2. Damadian, R. V. Tumor detection by nuclear magnetic resonance. Science 1971;171:1151.

    Article  PubMed  CAS  Google Scholar 

  3. Rabi, I. I., Zacharias, J. R., Millman, S., Kusch, P. A new method of measuring the nuclear magnetic moment. Phys Rev 1938;53:318.

    Article  CAS  Google Scholar 

  4. Bloembergen, N., Purcell, E. M., Pound, R. V. Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 1948;73:679–715.

    Article  CAS  Google Scholar 

  5. Stanisz, G. J., Odrobina, E. E., Pun, J., Escaravage, M., Graham, S. J. et al. T1,T2 relaxation and magnetization transfer in tissue at 3t. Magn Reson Med 2005;54: 507–512.

    Article  PubMed  Google Scholar 

  6. Bottomley, P. A., Hardy, C. J., Argersinger, R. E., Allen-Moore, G. A review of 1H nuclear magnetic resonance relaxation in pathology: Are T1 and T2 diagnostic? Med Phys 1987;14:1–37.

    Article  PubMed  CAS  Google Scholar 

  7. Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B., Zijdenbos, A. Maturation of white matter in the human brain: A review of magnetic resonance studies. Brain Res Bull 2001;54:255–266.

    Article  PubMed  CAS  Google Scholar 

  8. Gelman, N., Ewing, J. R., Gorell, J. M., Spickler, E. M., Solomon, E. G. Interregional variation of longitudinal relaxation rates in human brain at 3.0t: Relation to estimated iron and water contents. Magn Reson Med 2001;45:71–79.

    Article  PubMed  CAS  Google Scholar 

  9. Gelman, N., Gorell, J. M., Barker, P. B., Savage, R. M., Spickler, E. M. et al. MR imaging of the human brain at 3.0t: Preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 1999;210:759–767.

    PubMed  CAS  Google Scholar 

  10. Naoko, S., Sakai, O., Ozonoff, A., Jara, H. Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: Global and regional aging patterns. Mag Reson Imaging 2009;27:895–906.

    Article  Google Scholar 

  11. Williams, L. A., Gelman, N., Picot, P. A., Lee, D. S., Ewing, J. R. et al. Neonatal brain: regional variability of in vivo MR imaging relaxation rates at 3.0t – initial experience. Radiology 2005;235:595–603.

    Article  PubMed  Google Scholar 

  12. Hoque, R., Ledbetter, C., Gonzalez-Toledo, E., Misra, V., Menon, V. et al. The role of quantitative neuroimaging indices in the differentiation of ischemia from demyelination: An analytical study with case presentation. Int Rev Neurobiol 2007;79:491–519.

    Article  PubMed  Google Scholar 

  13. Li, Y., Srinivasan, R., Ratiney, H., Lu, Y., Chang, S. M., Nelson, S. J. Comparison of T1 and T2 metabolite relaxation times in glioma and normal brain at 3t. J Magn Reson Imaging 2008;28:342–350.

    Article  PubMed  Google Scholar 

  14. Carr, H. Y., Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 1954;94: 630–638.

    Article  CAS  Google Scholar 

  15. Meiboom, S., Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 1958;29:688–691.

    Article  CAS  Google Scholar 

  16. Whittall, K. P., MacKay, A. L., Li, D. K. B. Are mono-exponential fits to a few echoes sufficient to determine T2 relaxation for in vivo human brain? Magn Reson Med 1999;43:1255–1257.

    Article  Google Scholar 

  17. Powell, M. J. D. A tolerant algorithm for linearly constrained optimization calculations. Math Programming 1989;45:547–566.

    Article  Google Scholar 

  18. Nelder, J. A., Mead, R. A simplex method for function minimization. Comput J 1965;7:308–313.

    Google Scholar 

  19. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Appl Math 1944;2:164–168.

    Google Scholar 

  20. Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: The University of Michigan Press; 1975.

    Google Scholar 

  21. Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. Optimization by simulated annealing. Science 1983;220:671–680.

    Article  PubMed  CAS  Google Scholar 

  22. Clerc, M., Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 2002;6:58–73.

    Article  Google Scholar 

  23. Berger, M. F., Silverman, H. F. Microphone array optimization by stochastic region contraction. IEEE Trans Signal Proc 1991;38:2377–2386.

    Article  Google Scholar 

  24. Look, D. C., Locker, D. R. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 1970;41: 250–251.

    Article  CAS  Google Scholar 

  25. Brix, G., Schad, L. R., Deimling, M., Lorenz, W. J. Fast and precise T1 imaging using a TOMROP sequence. Magn Reson Imaging 1990;8:351–356.

    Article  PubMed  CAS  Google Scholar 

  26. Henderson, E., McKinnon, G., Lee, T. Y., Rutt, B. K. A fast 3d look-locker method for volumetric T1 mapping. Magn Reson Imaging 1999;17:1163–1171.

    Article  PubMed  CAS  Google Scholar 

  27. Gai, N. D., Butman, J. A. Modulated repetition time look-locker (MORTLL): A method for rapid high resolution three-dimensional T1 mapping. J Magn Reson Imaging 2009;30:640–648.

    Article  PubMed  Google Scholar 

  28. Freeman, A. J., Gowland, P. A., Mansfield, P. Optimization of the ultrafast look-locker echo-planar imaging T1 mapping sequence. Magn Reson Med 1998;16:765–772.

    CAS  Google Scholar 

  29. Christensen, K. A., Grand, D. M., Schulman, E. M., Walling, C. Optimal determination of relaxation times of Fourier transform nuclear magnetic resonance. Determination of spin-lattive relaxation times in chemically polarized species. J Phys Chem 1974;78:1971–1977.

    Article  CAS  Google Scholar 

  30. Homer, J., Beevers, M. S. A re-evaluation of a rapid ‘new’ method for determining NMR spin-lattice relaxation times. J Magn Reson 1985;63:287–297.

    CAS  Google Scholar 

  31. Wang, H. Z., Riederer, S. J., Lee, J. N. Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 1987;5:399–416.

    Article  PubMed  CAS  Google Scholar 

  32. Homer, J., Roberts, J. K. Routine evaluation of mo ratios and T1 values from driven equilibrium NMR specta. J Magn Reson 1990;87:265–272.

    Google Scholar 

  33. Deoni, S. C. L., Rutt, B. K., Peters, T. M. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003;49: 515–526.

    Article  PubMed  Google Scholar 

  34. Deoni, S. C. L., Peters, T. M., Rutt, B. K. Determination of optimal angles for variable nutation proton magnetic spin-lattice, T1, and spin-spin, T2, relaxation times measurement. Magn Reson Med 2004;51: 194–199.

    Article  PubMed  Google Scholar 

  35. Chang, L. C., Koay, C. G., Basser, P. J., Pierpaoli, C. Linear least-squares method for unbiased estimation of T1 from SPGR signals. Magn Reson Med 2008;60:496–501.

    Article  PubMed  Google Scholar 

  36. Carr, H. Y. Steady-state free precession in nuclear magnetic resonance. Phys Rev 1958;112:1693–1701.

    Article  CAS  Google Scholar 

  37. Hinshaw, W. S. Spin mapping: The application of moving gradients to NMR. Phys Lett A 1974;48:87–88.

    Article  Google Scholar 

  38. Scheffler, K., Hennig, J. T1 quantification with inversion recovery truefisp. Magn Reson Med 2001;45:720–723.

    Article  PubMed  CAS  Google Scholar 

  39. Deimling, M., Heid, O. (1994). Magnetization Prepared True FISP Imaging. In: Proceedings of the 2nd annual meeting of the ISMRM. San Fransico, p. 495.

    Google Scholar 

  40. Schmitt, P., Griswold, M. A., Jakob, P. M., Kotas, M., Gulani, V. et al. Inversion recovery truefisp: Quantification of T1, T2 and spin density. Magn Reson Med 2004;51: 661–667.

    Article  PubMed  Google Scholar 

  41. Parker, G. J., Barker, G. J., Tofts, P. S. Accurate multislice gradient echo T1 measurement in the presence of non-ideal RF pulse shape and RF field nonuniformity. Magn Reson Med 2001;45:838–845.

    Article  PubMed  CAS  Google Scholar 

  42. Pauly, P., Le Roux, P., Nishimura, D., Macovski, A. Parameter relations for the shinnar-le roux selective excitation pulse design algorithm. IEEE Trans Med Imaging 1991;10:53–65.

    Article  PubMed  CAS  Google Scholar 

  43. Madhuranthakam, A. J., Busse, R. F., Brittain, J. H., Rofsky, N. M., Alsop, D. C. B1-insensitive fast spin-echo using adiabatic square wave enabling of the echo train (SWEET) excitation. Magn Reson Med 2008;59:1386–1393.

    Article  PubMed  Google Scholar 

  44. Garwood, M., Ugurbil, K., Rath, A. R., Bendall, M. R., Ross, B. D., Mitchell, S. L., Merkle, H. Magnetic resonance imaging with adiabatic pulses using a single surface coil for RF transmission and signal detection. Magn Reson Med 1989;9:25–34.

    Article  PubMed  CAS  Google Scholar 

  45. Insko, E. K., Bolinger, L. Mapping of the radiofrequency field. J Magn Reson Ser A 1993;103:82–85.

    Article  CAS  Google Scholar 

  46. Jiru, F., Klose, U. Fast 3D radiofrequency field mapping using echo-planar imaging. Magn Reson Med 2006;56:1375–1379.

    Article  PubMed  CAS  Google Scholar 

  47. Morrell, G. R. A phase-sensitive method of flip angle mapping. Magn Reson Med 2008;60:889–894.

    Article  PubMed  Google Scholar 

  48. Cunningham, C. H., Pauly, J. M., Nayak, K. S. Saturated double-angle method for rapid B1+ mapping. Magn Reson Med 2006;55:1326–1333.

    Article  PubMed  Google Scholar 

  49. Deoni, S. C. L. High resolution T1 mapping of the brain at 3T with driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI). J Magn Reson Imaging 2007;26:1106–1111.

    Article  PubMed  Google Scholar 

  50. Katscher, U., Bornert, P. Parallel RF transmission in MRI. Nmr Biomed 2006;19:393–400.

    Article  PubMed  Google Scholar 

  51. Preibisch, C., Deichmann, R. Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 2009;61:125–135.

    Article  PubMed  CAS  Google Scholar 

  52. Freeman, R., Hill, H. D. W. Phase and intensity anomalies in Fourier transform NMR. J Magn Reson 1971;4:366–383.

    CAS  Google Scholar 

  53. Zur, Y., Wood, M. L., Neuringer, L. J. Motion-insensitive steady-state free precession imaging. Magn Reson Med 1990;16:444–459.

    Article  PubMed  CAS  Google Scholar 

  54. Deoni, S. C. L. Transverse relaxation time (T2) mapping in the brain with off-resonance correction using phase-cycled steady-state free precession imaging. J Magn Reson Imaging 2009;30:411–417.

    Article  PubMed  Google Scholar 

  55. MacKay, A., Laule, C., Vavasour, I., Bjarnason, T., Kolind, S., Madler, B. Insights into brain microstructure from the T2 distribution. Magn Reson Imaging 2006;24:515–525.

    Article  PubMed  Google Scholar 

  56. Kroeker, R. M., Henkelman, R. M. Analysis of biological NMR relaxation data with continuous distributions of relaxation times. J Magn Reson 1986;69:218–235.

    CAS  Google Scholar 

  57. Menon, R. S., Rusinko, M. S., Allen, P. S. Multiexponential proton relaxation in model cellular systems. Magn Reson Med 1991;20:196–213.

    Article  PubMed  CAS  Google Scholar 

  58. Whittal, K. P., MacKay, A. L., Graeb, D. A., Nugent, R. A., Li, D. K., Paty, D. W. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997;37:34–43.

    Article  Google Scholar 

  59. Cheng, K. H. In vivo tissue characterization of human brain by chisquares parameter maps: Multiparameter proton T2-relaxation analysis. Magn Reson Imaging 1994;12:1099–1109.

    Article  PubMed  CAS  Google Scholar 

  60. Laule, C., Leung, E., Lis, D. K., Traboulsee, A. L., Paty, D. W. et al. Myelin water imaging in multiple sclerosis: Quantitative comparison with histopathology. Mult Scler 2006;12:747–753.

    Article  PubMed  CAS  Google Scholar 

  61. Flynn, S. W., Lang, D. J., MacKay, A. L., Goghari, V., Vavasoir, I. M. et al. Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 2003;8:811–820.

    Article  PubMed  CAS  Google Scholar 

  62. Zimmerman, J. R., Britten, W. E. Nuclear magnetic resonance studies in multiple phase systems: Lifetime of a water molecule in an adsorbing phase on a silica gel. J Phys Chem 1957;61:1328–1333.

    Article  CAS  Google Scholar 

  63. Poon, C. S., Henkelman, R. M. Practical T2 quantitation for clinical applications. J Magn Reson Imaging 1992;2:541–553.

    Article  PubMed  CAS  Google Scholar 

  64. Du, Y. P., Chu, R., Hwang, D., Brown, M. S., Kleinschmidt-DeMasters, B. K. et al. Fast multislice mapping of the myelin water fraction using multicomponent analysis of T2* decay at 3t: A preliminary postmortem study. Magn Reson Med 2007;58:865–870.

    Article  PubMed  Google Scholar 

  65. Kreis, R., Fusch, C., Boesch, C. (1992). In vivo characterization of three water compartments in human white matter using a single voxel technique with short TE. In: Proceedings of the 11th Annual Meeting of SMRM, Berlin, Germany, p. 1963.

    Google Scholar 

  66. Spencer, R. G. S., Fishbein, K. W. Measurement of spin-lattice relaxation times and concentrations in systems with chemical exchange using the one-pulse sequence: Breakdown of the Ernst model for partial saturation in nuclear magnetic resonance spectroscopy. J Magn Reson 2000;142:120–135.

    Article  PubMed  CAS  Google Scholar 

  67. Deoni, S. C. L., Rutt, B. K., Arun, T., Pierpaoli, C., Jones, D. K. Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magn Reson Med 2008;60:1372–1387.

    Article  PubMed  Google Scholar 

  68. Ashburner, J., Friston, K. J. Voxel-based morphometry – the methods. Neuroimage 2000;11:805–821.

    Article  PubMed  CAS  Google Scholar 

  69. Tosun, D., Rettmann, M. E., Han, X., Tao, X., Xu, C. et al. Cortical surface segmentation and mapping. Neuroimage 2004;23(S1):S108–S118.

    Article  PubMed  Google Scholar 

  70. Deoni, S. C. L., Williams, S. C. R., Jezzard, P., Suckling, J., Murphy, D. G., Jones, D. K. Standardized structural magnetic resonance imaging in multicentre studies using quantitative T1 and T2 imaging at 1.5T. Neuroimage 2008;40:662–671.

    Article  PubMed  Google Scholar 

  71. van Buchem, M. A., McGowan, J. C., Grossman, R. I. Magnetization transfer histogram methodology: Its clinical and neuropsychological correlates. Neurology 1999;53: S23–S28.

    PubMed  Google Scholar 

  72. Jenkinson, M., Bannister, P. R., Brady, J. M. Improved optimization for the robust and fast linear registration and motion correction of brain images. Neuroimage 2002;17: 825–841.

    Article  PubMed  Google Scholar 

  73. Voormolem, E. H., Wei, C., Chow, E. W., Bassett, A. S., Mikulis, D. J., Crawley, A. P. Voxel-based morphometry and automated lobar volumetry: The trade-off between spatial scale and statistical correction. Neuroimage 2009;18 (ahead of print).

    Google Scholar 

  74. Catani, M., ffytche, D. H. The rises and falls of disconnection syndromes. Brain 2005;128:2224–2239.

    Article  PubMed  Google Scholar 

  75. Kanaan, R. A., Shergill, S. S., Barker, G. K., Catani, M., Ng, V. W. et al. Tract-specific anisotropy measurements in diffusion tensor imaging. Psychiatry Res 2006;146:73–82.

    Article  PubMed  Google Scholar 

  76. More, S., Oishi, K., Jiang, L., Li, X., Akhter, K. et al. Stereotactic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 2008;40:570–582.

    Article  Google Scholar 

  77. Catani, M., Thiebaut de Schotten, M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 2009;44:1105–1132.

    Article  Google Scholar 

  78. Basser, P. J. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. Nmr Biomed 1995;8:333–344.

    Article  PubMed  CAS  Google Scholar 

  79. Jones, D. K., Simmons, A., Williams, S. C., Horsfield, M. A. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 1999;42:37–41.

    Article  PubMed  CAS  Google Scholar 

  80. Bakshi, R., Thompson, A. J., Rocca, M. A., Pelletier, D., Dousset, V. et al. MRI in multiple sclerosis: Current status and future prospects. Lancet Neurol 2008;7:615–625.

    Article  PubMed  Google Scholar 

  81. Manfredonia, F., Ciccarelli, O., Khaleeli, Z., Tozer, D. J., Saste-Garriga, J. et al. Normal appearing brain T1 relaxation time predicts disability in early primary progressive multiple sclerosis. Arch Neurol 2007;64: 411–415.

    Article  PubMed  Google Scholar 

  82. Wang, Yi. Description of parallel imaging in MRI using multiple coils. Magn Reson Med 2000;44:495–499.

    Article  PubMed  CAS  Google Scholar 

  83. Deoni, S. C. L., Catani, M. Visualization of the deep cerebellar nuclei using quantitative T1 and rho magnetic resonance imaging at 3 Tesla. Neuroimage 2007;37:1260–1266.

    Article  PubMed  Google Scholar 

  84. Ffrench-Constant, C. Pathogenesis of multiple sclerosis. Lancet 1994;29:271–275.

    Article  Google Scholar 

  85. Be, L. The histopathology of grey matter demyelination in multiple sclerosis. Acta Neurol Scand Suppl 2009;189:51–57.

    Google Scholar 

  86. Gasperini, C., Horsfield, M. A., Thorpe, J. W., Kidd, D., Barkr, G. J. et al. Macroscopic and microscopic assessments of disease burden by MRI in multiple sclerosis: Relationship to clinical parameters. J Magn Reson Imaging 1996;6:580–584.

    Article  PubMed  CAS  Google Scholar 

  87. Ropele, S., Strasser-Fuchs, S., Augustin, M. et al. A comparison of magnetization transfer ratio, magnetization transfer rate, and the native relaxation time of water protons related to relapsing-remit- ting multiple sclerosis. AJNR Am J Neuroradiol 2000;21:1885–1889.

    PubMed  CAS  Google Scholar 

  88. Laule, C., Vavasour, I. M., Moore, G. R., Oger, J., Li, D. K., Paty, D. W., MacKay, A. L. Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study. J Neurol 2004;251:284–293.

    Article  PubMed  CAS  Google Scholar 

  89. Laule, C., Vavasour, I. M., Kolind, S. H., Traboulsee, A. L., Moore, G. R. et al. Long T2 water in multiple sclerosis: What else can we learn from multi-echo T2 relaxation? J Neurol 2007;254:1579–1587.

    Article  PubMed  Google Scholar 

  90. Kolind, S. H., Laule, C., Vavasour, I. M., Li, D. K., Traboulsee, A. L. et al. Complementary information from multi-exponential T2 relaxation and diffusion tensor imaging reveals differences between multiple sclerosis lesions. Neuroimage 2008;40:77–85.

    Article  PubMed  Google Scholar 

  91. DeWitt, L. D., Kistler, J. P., Miller, D. C., Richardson, E. P., Buonanno, F. S. NMR-neuropathologic correlation in stroke. Stroke 1987;18:342–351.

    Article  PubMed  CAS  Google Scholar 

  92. Kaur, J., Tuor, U. I., Zhao, Z., Peterson, J., Jin, A. Y., Baber, P. A. Quantified T1 as an adjunct to apparent diffusion coefficient for early infarct detection: A high-field magnetic resonance study in a rat stroke model. Int J Stroke 2009;4:159–168.

    Article  PubMed  CAS  Google Scholar 

  93. Bernarding, J., Braud, J., Hohmann, J., Mansmann, U., Hoehn-Berlage, M. et al. Histogram-based characterization of healthy and ischemic brain tissues using multiparametric MR imaging including apparent diffusion coefficient maps and relaxometry. Magn Reson Med 2000;43:52–61.

    Article  PubMed  CAS  Google Scholar 

  94. Reutens, D. C., Stevens, J. M., Kingsley, D., Kendall, B., Mose- ley, I. et al. Reliability of visual inspection for the detection of volumetric hippocampal asymmetry. Neuroradiology 1996;38:221–225.

    Article  PubMed  CAS  Google Scholar 

  95. Jackson, G. D., Connelly, A., Duncan, J. S., Gruenewald, R. A., Gadian, D. G. Detection of hippocampal pathology in intractable partial epilepsy: Increased sensitivity with qualitative magnetic resonance T2 relaxometry. Neurology 1993;43:1793–1799.

    PubMed  CAS  Google Scholar 

  96. Conlon, P., Trimble, M. R., Rogers, D., Callicot, C. Magnetic resonance imaging in epilepsy: A controlled study. Epilepsy Reson 1988;2:37–43.

    Article  CAS  Google Scholar 

  97. Jack, C. R., Jr., Wengenack, T. M., Reyes, D. A., Garwood, M., Curran, G. L. et al. In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J Neurosci 2005;25:10041–10048.

    Article  PubMed  CAS  Google Scholar 

  98. Schenck, J. F., Zimmerman, E. A. High-field magnetic resonance imaging of brain iron: Birth of a biomarker? NMR Biomed 2004;17:433–445.

    Article  PubMed  CAS  Google Scholar 

  99. Duan, J. H., Wang, H. Q., Xu, J., Lin, X., Chen, S. Q. et al. White matter damage of patients with Alzheimer’s disease correlated with decreased cognitive function. Surg Radiol Anat 2006;28:150–156.

    Article  PubMed  Google Scholar 

  100. Barkzokis, G., Lu, P. H., Mintz, J. Human brain myelination and amyloid beta deposition in Alzheimer’s disease. Alzheimers Dement 2007;3:122–125.

    Article  Google Scholar 

  101. House, M. J., St. Pierre, T. G., Foster, J. K., Matrins, R. N., Clarnette, R. Quantitative MR imaging R2 relaxometry in elderly participants reporting memory loss. AJNR 2006;27:430–439.

    Google Scholar 

  102. Akshoomoff, N., Pierce, K., Courchesne, E. The neurobiological basis of autism from a developmental perspective. Dev Psychol 2002;14:613–634.

    Google Scholar 

  103. Saito, N., Sakai, O., Ozonoff, A., Jara, H. Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: Global and regional aging patterns. Magn Reson Imaging 2009;27:895–906.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

A special thanks is extended to those who provided clinical examples and imaging data used herein: Prof. Derek Jones, Dr. Shannon Kolind, Dr. Janneke Zinkstok, Dr. Marco Catani, Dr. Emma Burkus, Dr. Mark Richardson, Katrina McMullin, Catherine Traynor, and Sarah Kwan. A debt of gratitude is owed to Dr. David Lythgoe, Dr. Fernando Zelya, Astrid Pauls, and Katrina McMullen for proof reading and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean C.L. Deoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Deoni, S.C. (2011). Magnetic Resonance Relaxation and Quantitative Measurement in the Brain. In: Modo, M., Bulte, J. (eds) Magnetic Resonance Neuroimaging. Methods in Molecular Biology, vol 711. Humana Press. https://doi.org/10.1007/978-1-61737-992-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-992-5_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-991-8

  • Online ISBN: 978-1-61737-992-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics