Skip to main content
Book cover

Cilia pp 149–168Cite as

Methods for Studying Ciliary-Mediated Chemoresponse in Paramecium

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1454))

Abstract

Paramecium is a useful model organism for the study of ciliary-mediated chemical sensing and response. Here we describe ways to take advantage of Paramecium to study chemoresponse.

Unicellular organisms like the ciliated protozoan Paramecium sense and respond to chemicals in their environment (Van Houten, Ann Rev Physiol 54:639–663, 1992; Van Houten, Trends Neurosci 17:62–71, 1994). A thousand or more cilia that cover Paramecium cells serve as antennae for chemical signals, similar to ciliary function in a large variety of metazoan cell types that have primary or motile cilia (Berbari et al., Curr Biol 19(13):R526–R535, 2009; Singla V, Reiter J, Science 313:629–633, 2006). The Paramecium cilia also produce the motor output of the detection of chemical cues by controlling swimming behavior. Therefore, in Paramecium the cilia serve multiple roles of detection and response.

We present this chapter in three sections to describe the methods for (1) assaying populations of cells for their behavioral responses to chemicals (attraction and repulsion), (2) characterization of the chemoreceptors and associated channels of the cilia using proteomics and binding assays, and (3) electrophysiological analysis of individual cells’ responses to chemicals. These methods are applied to wild type cells, mutants, transformed cells that express tagged proteins, and cells depleted of gene products by RNA Interference (RNAi).

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Van Houten JL (1992) Chemoresponse in microorganisms. Ann Rev Physiol 54:639–663

    Google Scholar 

  2. Van Houten JL (1994) Chemoreception in microorganisms: trends for neuroscience? Trends Neurosci 17:62–71

    Google Scholar 

  3. Berbari NF, Oconnor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19(13):R526–R535

    Google Scholar 

  4. Singla V, Reiter J (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313:629–633

    Google Scholar 

  5. Van Houten J, Preston RR (1987) Chemoreception: Paramecium as a receptor cell. Adv Exp Med Biol 221:375–384

    Google Scholar 

  6. Van Houten J (1998) Chemosensory transduction in Paramecium. Eur J Protistol 34:301–307

    Google Scholar 

  7. Bell WE, Karstens W, Sun Y, Van Houten JL (1998) Biotin chemoresponse in Paramecium. J Comp Physiol A 183(3):361–366

    Google Scholar 

  8. Van Houten J (1979) Membrane potential changes during chemokinesis in Paramecium. Science 204(4397):1100–1103

    Google Scholar 

  9. Davis DP, Fiekers J, Van HOuten J (1998) Intracellular pH and chemoresponse to NH4+ in Paramecium. Cell Motil Cytoskeleton 40:107–118

    Google Scholar 

  10. Preston RR, Van Houten JL (1987) Chemoreception in Paramecium tetraurelia: acetate and folate-induced membrane hyperpolarization. J Comp Physiol A 160(4):525–535

    Google Scholar 

  11. Yang WQ, Braun C, Plattner H, Purvee J, Van Houten JL (1997) Cyclic nucleotides in glutamate chemosensory signal transduction of Paramecium. J Cell Sci 110(Pt 20):2567–2572

    Google Scholar 

  12. Van Houten JL (2000) Chemoreception in microorganisms. In: Finger T, Silver W, Restrepo D (eds) The neurobiology of taste and smell. Wiley-Liss, New York, NY, pp 11–40

    Google Scholar 

  13. Machemer H (1974) Frequency and directional responses of cilia to membrane potential changes in Paramecium. J Comp Physiol 92:293–316

    Google Scholar 

  14. Preston RR, Usherwood PN (1988) L-Glutamate-induced membrane hyperpolarization and behavioural responses in Paramecium tetraurelia. J Comp Physiol A 164(1):75–82

    Google Scholar 

  15. Bell WE, Preston RR, Yano J, Van Houten JL (2007) Genetic dissection of attractant-induced conductances in Paramecium. J Exp Biol 210(Pt 2):357–365

    Google Scholar 

  16. Dunlap K (1977) Localization of calcium channels in Paramecium caudatum. J Physiol 271(1):119–133

    Google Scholar 

  17. Capdeville Y, Benwakrim A (1996) The major ciliary membrane proteins in Paramecium primaurelia are all glycosylphosphatidylinositol-anchored proteins. Eur J Cell Biol 70(4):339–346

    Google Scholar 

  18. Paquette CA, Rakochy V, Bush A, Van Houten JL (2001) Glycophosphatidylinositol-anchored proteins in Paramecium tetraurelia: possible role in chemoresponse. J Exp Biol 204(Pt 16):2899–2910

    Google Scholar 

  19. Yano J, Rachochy V, Van Houten JL (2003) Glycosyl phosphatidylinositol-anchored proteins in chemosensory signaling: antisense manipulation of Paramecium tetraurelia PIG-A gene expression. Eukaryot Cell 2(6):1211–1219

    Google Scholar 

  20. Merkel SJ, Kaneshiro ES, Gruenstein EI (1981) Characterization of the cilia and ciliary membrane proteins of wild-type Paramecium tetraurelia and a pawn mutant. J Cell Biol 89(2):206–215

    Google Scholar 

  21. Kleene S, Van Houten JL (2014) Electrical signaling in motile and primary cilia. BioScience 64:1092–1102

    Google Scholar 

  22. Barrera NP, Robinson CV (2011) Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu Rev Biochem 80:247–271

    Google Scholar 

  23. Van Houten JL (1977) A mutant of Paramecium defective in chemotaxis. Science 198:746–749

    Google Scholar 

  24. DiNallo MC, Wohlford M, Van Houten J (1982) Mutants of Paramecium defective in chemokinesis to folate. Genetics 102(2):149–158

    Google Scholar 

  25. Van Houten J, Martel E, Kasch T (1982) Kinetic analysis of chemokinesis of Paramecium. J Protozool 29(2):226–230

    Google Scholar 

  26. Romanovitch M (2012) The L-glutamate receptor in Paramecium tetraurelia. M.S. thesis, Department of Biology, University of Vermont, Burlington, VT

    Google Scholar 

  27. Weeraratne SD (2007) GPI receptors in folate chemosensor transduction in Paramecium tetraurelia. Ph.D. thesis, Department of Biology, University of Vermont, Burlington, VT

    Google Scholar 

  28. Jacobs CL (2007) NMDA receptor associated protein in Paramecium and it involvement in glutamate chemoresponse. M.S. thesis, Department of Biology, University of Vermont, Burlington, VT

    Google Scholar 

  29. Preston RR, Usherwood PNR (1988) Characterization of a specific L-[H-3]glutamic acid binding-site on cilia isolated from Paramecium tetraurelia. J Comp Physiol B 158(3):345–351

    Google Scholar 

  30. Czapla H (2012) Cyclic adenosine monophosphate receptors in Paramecium tetraurelia. M.S. thesis, Department of Biology, University of Vermont, Burlington, VT

    Google Scholar 

  31. Smith R, Preston RR, Schulz S, Gagnon ML, Van Houten J (1987) Correlations between cyclic AMP binding and chemoreception in Paramecium. Biochim Biophys Acta 928(2):171–178

    Google Scholar 

  32. Van Houten JL, Yang WQ, Bergeron A (2000) Chemosensory signal transduction in Paramecium. J Nutr 130(4S Suppl):946S–949S

    Google Scholar 

  33. Schulz S, Denaro M, Xypolyta-Bulloch A, Van Houten J (1984) The relationship of folate binding to chemoreception in Paramecium. J Comp Physiol A 155:113–119

    Google Scholar 

  34. Smith RA (1987) The association between external binding of cyclic AMP chemoattraction in Paramecium tetraurelia. M.S. thesis, Department of Biology, University of Vermont, Burlington, VT

    Google Scholar 

  35. Hansma HG (1979) Sodium uptake and membrane excitation in Paramecium. J Cell Biol 81(2):374–381

    Google Scholar 

  36. Machemer-Rohnisch S, Machemer H (1989) A Ca paradox: electric and behavioural responses of Paramecium following changes in external ion concentration. Eur J Protistol 25(1):45–59

    Google Scholar 

  37. Naitoh Y (1968) Ionic control of the reversal response of cilia in Paramecium caudatum. A calcium hypothesis. J Gen Physiol 51(1):85–103

    Google Scholar 

  38. Naitoh Y, Eckert R, Friedman K (1972) A regenerative calcium response in Paramecium. J Exp Biol 56(3):667–681

    Google Scholar 

  39. Preston RR (1990) A magnesium current in Paramecium. Science 250(4978):285–288

    Google Scholar 

  40. Preston RR, Van Houten JL (1987) Localization of the chemoreceptive properties of the surface membrane of Paramecium tetraurelia. J Comp Physiol A 160(4):537–541

    Google Scholar 

  41. Machemer H, Ogura A (1979) Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol 296:49–60

    Google Scholar 

  42. Valentine MS (2015) Polycystin-2 (PKD2), Eccentric (XNTA), and Meckelin (MKS3) in the ciliated model organism Paramecium tetraurelia. Ph.D. dissertation, Department of Biology, University of Vermont, Burlington, VT

    Google Scholar 

  43. Oami K (1996) Distribution of chemoreceptors to quinine of the cell surface of Paramecium caudatum. J Comp Physiol A 179:345–352

    Google Scholar 

  44. Oami K (1998) Membrane potential response of Paramecium caudatum to bitter substances: existence of multiple pathways for bitter responses. J Exp Biol 201:13–20

    Google Scholar 

  45. Sasner J, Van Houten JL (1989) Evidence for a Paramecium folate chemoreceptor. Chem Senses 14:587–595

    Google Scholar 

  46. Yano J, Rajendran A, Valentine MS, Saha M, Ballif BA, Van Houten JL (2013) Proteomic analysis of the cilia membrane of Paramecium tetraurelia. J Proteomics 78:113–122

    Google Scholar 

  47. Adoutte A, Ramanathan R, Lewis RM, Dute RR, Ling KY, Kung C, Nelson DL (1980) Biochemical studies of the excitable membrane of Paramecium tetraurelia. III. Proteins of cilia and ciliary membranes. J Cell Biol 84(3):717–738

    Google Scholar 

  48. Schulz S, Denaro M, Xypolytabulloch A, Vanhouten J (1984) Relationship of folate binding to chemoreception in Paramecium. J Comp Physiol 155(1):113–119

    Google Scholar 

  49. Van Houten J, Yang W, Bergeron A (2000) Glutamate chemosensory signal transduction in Paramecium. J Nutr 130:946S–949S

    Google Scholar 

  50. Arnaiz O, Malinowska A, Klotz C, Sperling L, Dadlez M, Koll F, Cohen J (2009) Cildb: a knowledgebase for centrosomes and cilia. Database (Oxford) 2009:bap22

    Google Scholar 

  51. Qoronfleh MW, Benton B, Ignacio R, Kaboord B (2003) Selective enrichment of membrane proteins by partition phase separation for proteomic studies. J Biomed Biotechnol 2003(4):249–255

    Google Scholar 

  52. Preston RR, Kung C (1994) Inhibition of Mg2+ current by single-gene mutation in Paramecium. J Membr Biol 139(3):203–213

    Google Scholar 

  53. Haynes WJ, Kung C, Saimi Y, Preston RR (2002) An exchanger-like protein underlies the large Mg2+ current in Paramecium. Proc Natl Acad Sci U S A 99(24):15717–15722

    Google Scholar 

  54. Klotz I (1982) Number of receptor sites from Scatchard graphs: facts and fantasies. Science 217:1247–1249

    Google Scholar 

  55. Motulsky H, Christopoulos A (2005) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford University Press, San Diego, CA

    Google Scholar 

  56. Van Houten J, Hansma H, Kung C (1975) Two quantitative assays for chemotaxis in Paramecium. J Comp Physiol 104:211–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith L. Van Houten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Valentine, M.S., Van Houten, J.L. (2016). Methods for Studying Ciliary-Mediated Chemoresponse in Paramecium . In: Satir, P., Christensen, S. (eds) Cilia. Methods in Molecular Biology, vol 1454. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3789-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3789-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3787-5

  • Online ISBN: 978-1-4939-3789-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics