Skip to main content
Book cover

Optogenetics pp 167–175Cite as

Optogenetics in Drosophila Neuroscience

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1408))

Abstract

Optogenetic techniques enable one to target specific neurons with light-sensitive proteins, e.g., ion channels, ion pumps, or enzymes, and to manipulate their physiological state through illumination. Such artificial interference with selected elements of complex neuronal circuits can help to determine causal relationships between neuronal activity and the effect on the functioning of neuronal circuits controlling animal behavior. The advantages of optogenetics can best be exploited in genetically tractable animals whose nervous systems are, on the one hand, small enough in terms of cell numbers and to a certain degree stereotypically organized, such that distinct and identifiable neurons can be targeted reproducibly. On the other hand, the neuronal circuitry and the behavioral repertoire should be complex enough to enable one to address interesting questions. The fruit fly Drosophila melanogaster is a favorable model organism in this regard. However, the application of optogenetic tools to depolarize or hyperpolarize neurons through light-induced ionic currents has been difficult in adult flies. Only recently, several variants of Channelrhodopsin-2 (ChR2) have been introduced that provide sufficient light sensitivity, expression, and stability to depolarize central brain neurons efficiently in adult Drosophila. Here, we focus on the version currently providing highest photostimulation efficiency, ChR2-XXL. We exemplify the use of this optogenetic tool by applying it to a widely used aversive olfactory learning paradigm. Optogenetic activation of a population of dopamine-releasing neurons mimics the reinforcing properties of a punitive electric shock typically used as an unconditioned stimulus. In temporal coincidence with an odor stimulus this artificially induced neuronal activity causes learning of the odor signal, thereby creating a light-induced memory.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fiala A (2013) Optogenetic approaches in behavioral neuroscience. In: Hegemann P, Sigrist S (eds) Optogenetics. De Gruyter, Berlin/Boston, pp 91–97

    Google Scholar 

  2. Wimmer EA (2003) Innovations: applications of insect transgenesis. Nat Rev Genet 4(3):225–232

    Article  CAS  PubMed  Google Scholar 

  3. Venken KJ, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72(2):202–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Helfrich-Förster C (2005) Neurobiology of the fruit fly’s circadian clock. Genes Brain Behav 4(2):65–76

    Article  PubMed  Google Scholar 

  5. Behnia R, Desplan C (2015) Visual circuits in flies: beginning to see the whole picture. Curr Opin Neurobiol 34:125–132

    Article  CAS  PubMed  Google Scholar 

  6. Wilson RI (2013) Early olfactory processing in Drosophila: mechanisms and principles. Annu Rev Neurosci 36:217–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Albert JT, Göpfert MC (2015) Hearing in Drosophila. Curr Opin Neurobiol 34:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fiala A (2007) Olfaction and olfactory learning in Drosophila: recent progress. Curr Opin Neurobiol 17(6):720–726

    Article  CAS  PubMed  Google Scholar 

  9. Guven-Ozkan T, Davis RL (2014) Functional neuroanatomy of Drosophila olfactory memory formation. Learn Mem 21(10):519–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Looger LL, Griesbeck O (2012) Genetically encoded neural activity indicators. Curr Opin Neurobiol 22(1):18–23

    Article  CAS  PubMed  Google Scholar 

  11. Riemensperger T, Pech U, Dipt S et al (2012) Optical calcium imaging in the nervous system of Drosophila melanogaster. Biochim Biophys Acta 1820(8):1169–1178

    Article  CAS  PubMed  Google Scholar 

  12. Kitamoto T (2001) Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 47(2):81–92

    Article  CAS  PubMed  Google Scholar 

  13. Hamada FN, Rosenzweig M, Kang K et al (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454(7201):217–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fiala A, Suska A, Schlüter OM (2010) Optogenetic approaches in neuroscience. Curr Biol 20(20):897–903

    Article  Google Scholar 

  15. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(24):2279–2284

    Article  CAS  PubMed  Google Scholar 

  17. Schroll C, Riemensperger T, Bucher D et al (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila. Curr Biol 16(17):1741–1747

    Article  CAS  PubMed  Google Scholar 

  18. Pulver SR, Pashkovski SL, Hornstein NJ et al (2009) Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J Neurophysiol 101(6):3075–3088

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hwang RY, Zhong L, Xu Y et al (2007) Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr Biol 17(24):2105–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bellmann D, Richardt A, Freyberger R et al (2010) Optogenetically induced olfactory stimulation in Drosophila larvae reveals the neuronal basis of odor-aversion behavior. Front Behav Neurosci 4:27. doi:10.3389/fnbeh.2010.00027

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ljaschenko D, Ehmann N, Kittel RJ (2013) Hebbian plasticity guides maturation of glutamate receptor fields in vivo. Cell Rep 3(5):1407–1413

    Article  CAS  PubMed  Google Scholar 

  22. Ullrich S, Gueta R, Nagel G (2013) Degradation of channelopsin-2 in the absence of retinal and degradation resistance in certain mutants. Biol Chem 394(2):271–280

    Article  CAS  PubMed  Google Scholar 

  23. Suh GS, Ben-Tabou de Leon S, Tanimoto H et al (2007) Light activation of an innate olfactory avoidance response in Drosophila. Curr Biol 17(10):905–908

    Article  CAS  PubMed  Google Scholar 

  24. Lin JY, Knutsen PM, Muller A et al (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16(10):1499–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inagaki HK, Jung Y, Hoopfer ED et al (2014) Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 11(3):325–332

    Article  CAS  PubMed  Google Scholar 

  26. Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11(3):338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dawydow A, Gueta R, Ljaschenko D et al (2014) Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Proc Natl Acad Sci U S A 111(38):13972–13977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157(2):263–277

    Article  CAS  PubMed  Google Scholar 

  29. Riemensperger T, Völler T, Stock P et al (2005) Punishment prediction by dopaminergic neurons in Drosophila. Curr Biol 15(21):1953–1960

    Article  CAS  PubMed  Google Scholar 

  30. Schwaerzel M, Monastirioti M, Scholz H et al (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23(33):10495–10502

    CAS  PubMed  Google Scholar 

  31. Aso Y, Siwanowicz I, Bräcker L et al (2010) Specific dopaminergic neurons for the formation of labile aversive memory. Curr Biol 20(16):1445–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Claridge-Chang A, Roorda RD, Vrontou E et al (2009) Writing memories with light-addressable reinforcement circuitry. Cell 139(2):405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aso Y, Herb A, Ogueta M et al (2012) Three dopamine pathways induce aversive odor memories with different stability. PLoS Genet 8(7):e1002768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Friggi-Grelin F, Coulom H, Meller M et al (2003) Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol 54(4):618–627

    Article  CAS  PubMed  Google Scholar 

  35. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft (FI 821/3-1 and SFB 889/B4 to A.F., and KI 1460/1-1, SFB 1047/A5, and FOR 2140/TP3 to R.J.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Fiala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Riemensperger, T., Kittel, R.J., Fiala, A. (2016). Optogenetics in Drosophila Neuroscience. In: Kianianmomeni, A. (eds) Optogenetics. Methods in Molecular Biology, vol 1408. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3512-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3512-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3510-9

  • Online ISBN: 978-1-4939-3512-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics