Skip to main content

Microfluidic Devices for Imaging Trafficking Events In Vivo Using Genetic Model Organisms

  • Protocol
  • First Online:
Book cover Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

Miniature devices are powerful new tools that can be used to address multiple questions in biology especially in investigating an individual cell or organism. The primary step forward has been the ease of soft lithography fabrication which has allowed researchers from different disciplines, with incomplete technical knowledge, to develop and use new devices for their own research problems. In this chapter, we describe a simple fabrication process that will allow investigators to make microfluidic devices for in vivo imaging studies using genetic model organisms such as C. elegans, Drosophila larvae, and zebrafish larvae. This microfluidic technology enables detailed studies on multiple cellular and subcellular phenomena including intracellular vesicle trafficking in living organisms over different developmental stages in an anesthetic free environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2001) Subcellular positioning of small molecules. Nature 411:1016

    Article  CAS  PubMed  Google Scholar 

  2. Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  PubMed  Google Scholar 

  4. Sivagnanam V, Gijs MA (2013) Exploring living multicellular organisms, organs, and tissues using microfluidic systems. Chem Rev 113:3214–3247

    Article  CAS  PubMed  Google Scholar 

  5. Huang B, Wu H, Bhaya D et al (2007) Counting low-copy number proteins in a single cell. Science 315:81–84

    Article  CAS  PubMed  Google Scholar 

  6. Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6:1445–1449

    Article  PubMed  Google Scholar 

  7. Kobel S, Valero A, Latt J, Renaud P, Lutolf M (2010) Optimization of microfluidic single cell trapping for long-term on-chip culture. Lab Chip 10:857–863

    Article  CAS  PubMed  Google Scholar 

  8. Le Gac S, van den Berg A (2012) Single cell electroporation using microfluidic devices. Methods Mol Biol 853:65–82

    Article  PubMed  Google Scholar 

  9. Steinmeyer JD, Yanik MF (2012) High-throughput single-cell manipulation in brain tissue. PLoS One 7:e35603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Guo SX, Bourgeois F, Chokshi T et al (2008) Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nat Methods 5:531–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Mondal S, Ahlawat S, Rau K, Venkataraman V, Koushika SP (2011) Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices. Traffic 12:372–385

    Article  CAS  PubMed  Google Scholar 

  12. Mondal S, Ahlawat S, Koushika SP (2012) Simple microfluidic devices for in vivo imaging of C. elegans, Drosophila and zebrafish. J Vis Exp 67:pii: 3780

    Google Scholar 

  13. Gilleland CL, Rohde CB, Zeng F, Yanik MF (2010) Microfluidic immobilization of physiologically active Caenorhabditis elegans. Nat Protoc 5:1888–1902

    Article  CAS  PubMed  Google Scholar 

  14. Xian B, Shen J, Chen W et al (2013) WormFarm: a quantitative control and measurement device toward automated Caenorhabditis elegans aging analysis. Aging Cell 12:398–409

    Article  CAS  PubMed  Google Scholar 

  15. Yang J, Chen Z, Yang F, Wang S, Hou F (2013) A microfluidic device for rapid screening of chemotaxis-defective Caenorhabditis elegans mutants. Biomed Microdevices 15:211–220

    Article  PubMed  Google Scholar 

  16. Rezai P, Salam S, Selvaganapathy PR, Gupta BP (2012) Electrical sorting of Caenorhabditis elegans. Lab Chip 12:1831–1840

    Article  CAS  PubMed  Google Scholar 

  17. Kanodia JS, Liang HL, Kim Y et al (2012) Pattern formation by graded and uniform signals in the early Drosophila embryo. Biophys J 102:427–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ghannad-Rezaie M, Wang X, Mishra B, Collins C, Chronis N (2012) Microfluidic chips for in vivo imaging of cellular responses to neural injury in Drosophila larvae. PLoS One 7:e29869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Levario TJ, Zhan M, Lim B, Shvartsman SY, Lu H (2013) Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nat Protoc 8:721–736

    Article  PubMed  Google Scholar 

  20. Chung K, Kim Y, Kanodia JS, Gong E, Shvartsman SY, Lu H (2011) A microfluidic array for large-scale ordering and orientation of embryos. Nat Methods 8:171–176

    Article  CAS  PubMed  Google Scholar 

  21. Wielhouwer EM, Ali S, Al-Afandi A et al (2011) Zebrafish embryo development in a microfluidic flow-through system. Lab Chip 11:1815–1824

    Article  CAS  PubMed  Google Scholar 

  22. Pardo-Martin C, Allalou A, Medina J, Eimon PM, Wahlby C, Fatih Yanik M (2013) High-throughput hyperdimensional vertebrate phenotyping. Nat Commun 4:1467

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hwang H, Lu H (2013) Microfluidic tools for developmental studies of small model organisms—nematodes, fruit flies, and zebrafish. Biotechnol J 8:192–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hulme SE, Shevkoplyas SS, Apfeld J, Fontana W, Whitesides GM (2007) A microfabricated array of clamps for immobilizing and imaging C. elegans. Lab Chip 7:1515–1523

    Article  CAS  PubMed  Google Scholar 

  25. Allen PB, Sgro AE, Chao DL et al (2008) Single-synapse ablation and long-term imaging in live C. elegans. J Neurosci Methods 173:20–26

    Article  PubMed Central  PubMed  Google Scholar 

  26. Chronis N, Zimmer M, Bargmann CI (2007) Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods 4:727–731

    Article  CAS  PubMed  Google Scholar 

  27. Rohde CB, Zeng F, Gonzalez-Rubio R, Angel M, Yanik MF (2007) Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc Natl Acad Sci U S A 104:13891–13895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chung K, Crane MM, Lu H (2008) Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat Methods 5:637–643

    Article  CAS  PubMed  Google Scholar 

  29. Zeng F, Rohde CB, Yanik MF (2008) Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab Chip 8:653–656

    Article  CAS  PubMed  Google Scholar 

  30. Krajniak J, Lu H (2010) Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies. Lab Chip 10:1862–1868

    Article  CAS  PubMed  Google Scholar 

  31. Krajniak J, Hao Y, Mak HY, Lu H (2013) C.L.I.P.-continuous live imaging platform for direct observation of C. elegans physiological processes. Lab Chip 13:2963–2971

    Article  CAS  PubMed  Google Scholar 

  32. Chokshi TV, Ben-Yakar A, Chronis N (2009) CO2 and compressive immobilization of C. elegans on-chip. Lab Chip 9:151–157

    Article  CAS  PubMed  Google Scholar 

  33. Chuang HS, Chen HY, Chen CS, Chiu WT (2013) Immobilization of the nematode Caenorhabditis elegans with addressable light-induced heat knockdown (ALINK). Lab Chip 13:2980–2989

    Article  CAS  PubMed  Google Scholar 

  34. Caceres Ide C, Valmas N, Hilliard MA, Lu H (2012) Laterally orienting C. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies. PLoS One 7:e35037

    Article  PubMed  Google Scholar 

  35. Hu C, Dillon J, Kearn J et al (2013) NeuroChip: a microfluidic electrophysiological device for genetic and chemical biology screening of Caenorhabditis elegans adult and larvae. PLoS One 8:e64297

    Article  PubMed Central  PubMed  Google Scholar 

  36. Lockery SR, Hulme SE, Roberts WM et al (2012) A microfluidic device for whole-animal drug screening using electrophysiological measures in the nematode C. elegans. Lab Chip 12:2211–2220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lee H, Crane MM, Zhang Y, Lu H (2013) Quantitative screening of genes regulating tryptophan hydroxylase transcription in Caenorhabditis elegans using microfluidics and an adaptive algorithm. Integr Biol (Camb) 5:372–380

    Article  CAS  Google Scholar 

  38. Orozco JT, Wedaman KP, Signor D, Brown H, Rose L, Scholey JM (1999) Movement of motor and cargo along cilia. Nature 398:674

    Article  CAS  PubMed  Google Scholar 

  39. Norris AD, Lundquist EA (2011) UNC-6/netrin and its receptors UNC-5 and UNC-40/DCC modulate growth cone protrusion in vivo in C. elegans. Development 138:4433–4442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Alan JK, Lundquist EA (2012) Analysis of Rho GTPase function in axon pathfinding using Caenorhabditis elegans. Methods Mol Biol 827:339–358

    Article  CAS  PubMed  Google Scholar 

  41. Ou G, Vale RD (2009) Molecular signatures of cell migration in C. elegans Q neuroblasts. J Cell Biol 185:77–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Dai J, Ting-Beall HP, Sheetz MP (1997) The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells. J Gen Physiol 110:1–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wang X, Schwarz TL (2009) Imaging axonal transport of mitochondria. Methods Enzymol 457:319–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Plucinska G, Paquet D, Hruscha A et al (2012) In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J Neurosci 32:16203–16212

    Article  CAS  PubMed  Google Scholar 

  45. Murthy K, Bhat JM, Koushika SP (2011) In vivo imaging of retrogradely transported synaptic vesicle proteins in Caenorhabditis elegans neurons. Traffic 12:89–101

    Article  CAS  PubMed  Google Scholar 

  46. Simpson HD, Kita EM, Scott EK, Goodhill GJ (2012) A quantitative analysis of branching, growth cone turning, and directed growth in zebrafish retinotectal axon guidance. J Comp Neurol 521:1409–1429

    Article  Google Scholar 

  47. Roossien DH, Lamoureux P, Van Vactor D, Miller KE (2013) Drosophila growth cones advance by forward translocation of the neuronal cytoskeletal meshwork in vivo. PLoS One 8:e80136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Wolman MA, Sittaramane VK, Essner JJ, Yost HJ, Chandrasekhar A, Halloran MC (2008) Transient axonal glycoprotein-1 (TAG-1) and laminin-alpha1 regulate dynamic growth cone behaviors and initial axon direction in vivo. Neural Dev 3:6

    Article  PubMed Central  PubMed  Google Scholar 

  49. Daniels BR, Masi BC, Wirtz D (2006) Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys J 90:4712–4719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Surana S, Bhat JM, Koushika SP, Krishnan Y (2011) An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat Commun 2:340

    Article  PubMed  Google Scholar 

  51. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Ashburner M, Roote J (2007) Maintenance of a Drosophila laboratory: general procedures. CSH Protoc 2007:pdp ip35

    Google Scholar 

  53. Avdesh A, Chen M, Martin-Iverson MT (2012) Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. J Vis Exp. (69): e4196

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Krishanu Ray (DBS-TIFR) for providing us with Drosophila stocks, Shikha Ahlawat for jsIs609 imaging, Tarjani Agarwal for maintaining a Drosophila cage, and Dr. Vatsala Thirumalai (NCBS-TIFR) and Surya Prakash for providing us with zebrafish larvae. This work was funded by the DBT postdoctoral fellowship (S. M.), DST Fast-track scheme (S. M.), and a DBT grant (S. P. K.). S. P. K. is an HHMI International early career scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhya P. Koushika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mondal, S., Koushika, S.P. (2014). Microfluidic Devices for Imaging Trafficking Events In Vivo Using Genetic Model Organisms. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics