Skip to main content

Light-Inducible Gene Regulation with Engineered Zinc Finger Proteins

  • Protocol
  • First Online:
Photoswitching Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1148))

Abstract

The coupling of light-inducible protein–protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gossen MFS, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268(5218):1766–1769

    Article  CAS  PubMed  Google Scholar 

  2. No D, Yao TP, Evans RM (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 93(8):3346–3351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rivera VM, Clackson T, Natesan S, Pollock R, Amara JF, Keenan T, Magari SR, Phillips T, Courage NL, Cerasoli F Jr, Holt DA, Gilman M (1996) A humanized system for pharmacologic control of gene expression. Nat Med 2(9):1028–1032

    Article  CAS  PubMed  Google Scholar 

  4. Beerli RR, Schopfer U, Dreier B, Barbas CF 3rd (2000) Chemically regulated zinc finger transcription factors. J Biol Chem 275(42):32617–32627. doi:10.1074/jbc.M005108200

    Article  CAS  PubMed  Google Scholar 

  5. Fussenegger M, Morris RP, Fux C, Rimann M, von Stockar B, Thompson CJ, Bailey JE (2000) Streptogramin-based gene regulation systems for mammalian cells. Nat Biotechnol 18(11):1203–1208. doi:10.1038/81208

    Article  CAS  PubMed  Google Scholar 

  6. Weber W, Fux C, Daoud-el Baba M, Keller B, Weber CC, Kramer BP, Heinzen C, Aubel D, Bailey JE, Fussenegger M (2002) Macrolide-based transgene control in mammalian cells and mice. Nat Biotechnol 20(9):901–907. doi:10.1038/nbt731

    Article  CAS  PubMed  Google Scholar 

  7. Dent CL, Lau G, Drake EA, Yoon A, Case CC, Gregory PD (2007) Regulation of endogenous gene expression using small molecule-controlled engineered zinc-finger protein transcription factors. Gene Ther 14(18):1362–1369. doi:10.1038/sj.gt.3302985

    CAS  PubMed  Google Scholar 

  8. Magnenat L, Schwimmer LJ, Barbas CF 3rd (2008) Drug-inducible and simultaneous regulation of endogenous genes by single-chain nuclear receptor-based zinc-finger transcription factor gene switches. Gene Ther 15(17):1223–1232. doi:gt200896 [pii]10.1038/gt.2008.96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Schwimmer LJ, Gonzalez B, Barbas CF 3rd (2012) Benzoate X receptor zinc-finger gene switches for drug-inducible regulation of transcription. Gene Ther 19(4):458–462. doi:10.1038/gt.2011.112

    Article  CAS  PubMed  Google Scholar 

  10. Pathak GP, Vrana JD, Tucker CL (2013) Optogenetic control of cell function using engineered photoreceptors. Biol Cell 105(2):59–72. doi:10.1111/boc.201200056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Muller K, Weber W (2013) Optogenetic tools for mammalian systems. Mol Biosyst 9(4):596–608. doi:10.1039/c3mb25590e

    Article  PubMed  Google Scholar 

  12. Yazawa M, Sadaghiani AM, Hsueh B, Dolmetsch RE (2009) Induction of protein–protein interactions in live cells using light. Nat Biotechnol 27(10):941–945, http://www.nature.com/nbt/journal/v27/n10/suppinfo/nbt.1569_S1.html

    Article  CAS  PubMed  Google Scholar 

  13. Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7(12):973–975, http://www.nature.com/nmeth/journal/v7/n12/abs/nmeth.1524.html—supplementary-information

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ye H, Baba MD-E, Peng R-W, Fussenegger M (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332(6037):1565–1568. doi:10.1126/science.1203535

    Article  CAS  PubMed  Google Scholar 

  15. Ohlendorf R, Vidavski RR, Eldar A, Moffat K, Moglich A (2012) From dusk till dawn: one-plasmid systems for light-regulated gene expression. J Mol Biol 416(4):534–542. doi:10.1016/j.jmb.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9(3):266–269, http://www.nature.com/nmeth/journal/v9/n3/abs/nmeth.1892.html—supplementary-information

    Article  CAS  PubMed  Google Scholar 

  17. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500(7463):472–476

    CAS  PubMed  Google Scholar 

  18. Shimizu-Sato S, Huq E, Tepperman JM, Quail PH (2002) A light-switchable gene promoter system. Nat Biotechnol 20(10):1041–1044

    Article  CAS  PubMed  Google Scholar 

  19. Levskaya A, Lim WA, Voigt CA, Weiner OD (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461(7266):997–1001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Muller K, Engesser R, Metzger S, Schulz S, Kampf MM, Busacker M, Steinberg T, Tomakidi P, Ehrbar M, Nagy F, Timmer J, Zubriggen MD, Weber W (2013) A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res 41(7):e77. doi:10.1093/nar/gkt002

    Article  PubMed Central  PubMed  Google Scholar 

  21. Beerli RR, Dreier B, Barbas CF 3rd (2000) Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci U S A 97(4):1495–1500. doi:10.1073/pnas.040552697 040552697 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Beerli RR, Segal DJ, Dreier B, Barbas CF 3rd (1998) Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci U S A 95(25): 14628–14633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Polstein LR, Gersbach CA (2012) Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc 134(40):16480–16483. doi:10.1021/ja3065667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yazawa M, Sadaghiani AM, Hsueh B, Dolmetsch RE (2009) Induction of protein–protein interactions in live cells using light. Nat Biotechnol 27(10):941–945. doi:nbt.1569 [pii] 10.1038/nbt.1569

    Article  CAS  PubMed  Google Scholar 

  25. Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340. doi:70/1/313 [pii] 10.1146/annurev.biochem.70.1.313

    Article  CAS  PubMed  Google Scholar 

  26. Beerli RR, Barbas CF 3rd (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 20(2):135–141. doi:10.1038/nbt0202-135

    Article  CAS  PubMed  Google Scholar 

  27. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31(2):294–301. doi:10.1016/j.molcel.2008.06.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8(1):67–69. doi:10.1038/nmeth.1542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gonzalez B, Schwimmer LJ, Fuller RP, Ye Y, Asawapornmongkol L, Barbas CF 3rd (2010) Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 5(4):791–810. doi:10.1038/nprot.2010.34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Carroll D, Morton JJ, Beumer KJ, Segal DJ (2006) Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 1(3):1329–1341. doi:nprot.2006.231 [pii] 10.1038/nprot.2006.231

    Article  CAS  PubMed  Google Scholar 

  31. Gupta A, Christensen RG, Rayla AL, Lakshmanan A, Stormo GD, Wolfe SA (2012) An optimized two-finger archive for ZFN-mediated gene targeting. Nat Methods 9(6):588–590. doi:10.1038/nmeth.1994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bhakta MS, Segal DJ (2010) The generation of zinc finger proteins by modular assembly. Methods Mol Biol 649:3–30. doi:10.1007/978-1-60761-753-2_1

    Article  CAS  PubMed  Google Scholar 

  33. Bhakta MS, Henry IM, Ousterout DG, Das KT, Lockwood SH, Meckler JF, Wallen MC, Zykovich A, Yu Y, Leo H, Xu L, Gersbach CA, Segal DJ (2013) Highly active zinc-finger nucleases by extended modular assembly. Genome Res 23(3):530–538. doi:10.1101/gr.143693.112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Thibodeau-Beganny S, Maeder ML, Joung JK (2010) Engineering single Cys2His2 zinc finger domains using a bacterial cell-based two-hybrid selection system. Methods Mol Biol 649:31–50. doi:10.1007/978-1-60761-753-2_2

    Article  CAS  PubMed  Google Scholar 

  35. Zhu C, Gupta A, Hall VL, Rayla AL, Christensen RG, Dake B, Lakshmanan A, Kuperwasser C, Stormo GD, Wolfe SA (2013) Using defined finger-finger interfaces as units of assembly for constructing zinc-finger nucleases. Nucleic Acids Res 41(4):2455–2465. doi:10.1093/nar/gks1357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Perez-Pinera P, Ousterout DG, Brown MT, Gersbach CA (2012) Gene targeting to the ROSA26 locus directed by engineered zinc finger nucleases. Nucleic Acids Res 40(8):3741–3752. doi:gkr1214 [pii] 10.1093/nar/gkr1214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Perez-Pinera P, Ousterout DG, Gersbach CA (2012) Advances in targeted genome editing. Curr Opin Chem Biol 16(3–4):268–277. doi:S1367-5931(12)00076-2 [pii] 10.1016/j.cbpa.2012.06.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Sander JD, Yeh JR, Peterson RT, Joung JK (2011) Engineering zinc finger nucleases for targeted mutagenesis of zebrafish. Methods Cell Biol 104:51–58. doi:10.1016/B978-0-12-374814-0.00003-3

    Article  CAS  PubMed  Google Scholar 

  39. Mandell JG, Barbas CF 3rd (2006) Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 34(Web Server issue):W516–W523. doi:34/suppl_2/W516 [pii] 10.1093/nar/gkl209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D (2010) ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res 38 (Web Server issue):W462–W468. doi:10.1093/nar/gkq319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Fu F, Sander JD, Maeder M, Thibodeau-Beganny S, Joung JK, Dobbs D, Miller L, Voytas DF (2009) Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays. Nucleic Acids Res 37(Database issue):D279–D283. doi:gkn606 [pii] 10.1093/nar/gkn606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Engineered Zinc Finger Proteins (2010) Methods in Molecular Biology. 649

    Google Scholar 

  43. Packeiser H, Lim C, Balagurunathan B, Wu J, Zhao H (2013) An extremely simple and effective colony PCR procedure for bacteria, yeasts, and microalgae. Appl Biochem Biotechnol 169(2):695–700. doi:10.1007/s12010-012-0043-8

    Article  CAS  PubMed  Google Scholar 

  44. Kasahara M, Swartz TE, Olney MA, Onodera A, Mochizuki N, Fukuzawa H, Asamizu E, Tabata S, Kanegae H, Takano M, Christie JM, Nagatani A, Briggs WR (2002) Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol 129(2):762–773. doi:10.1104/pp.002410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Nash AI, McNulty R, Shillito ME, Swartz TE, Bogomolni RA, Luecke H, Gardner KH (2011) Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc Natl Acad Sci U S A 108(23):9449–9454. doi:10.1073/pnas.1100262108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Ricardo E. Dolmetsch provided the original GI and LOV-VP16 plasmid constructs and Carlos F. Barbas, III provided ZFP constructs used to characterize the original LITEZ system. Graeme O’Connell and Chandra Tucker assisted in the design and programming of the custom LED array. This research was funded by an NSF CAREER Award (CBET-1151035), NIH Director’s New Innovator Award (1DP2-OD008586), NIH 1R01-DA036865, and a Ralph E. Powe Junior Faculty Enhancement Award from Oak Ridge Associated Universities. L.R.P. was supported by an NIH Biotechnology Training Grant to the Duke Center for Biomolecular and Tissue Engineering (T32GM008555) and the Duke Biomedical Engineering McChesney Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Gersbach Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Polstein, L.R., Gersbach, C.A. (2014). Light-Inducible Gene Regulation with Engineered Zinc Finger Proteins. In: Cambridge, S. (eds) Photoswitching Proteins. Methods in Molecular Biology, vol 1148. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0470-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0470-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0469-3

  • Online ISBN: 978-1-4939-0470-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics