Skip to main content

Neurobiological Mechanisms for Impulsive-Aggression: The Role of MAOA

  • Chapter
  • First Online:
Neuroscience of Aggression

Abstract

Aggression may be present across a large part of the spectrum of psychopathology, and underlies costly criminal antisocial behaviors. Human aggression is a complex and underspecified construct, confounding scientific discovery. Nevertheless, some biologically tractable subtypes are apparent, and one in particular—impulsive (reactive) aggression—appears to account for many facets of aggression-related dysfunction in psychiatric illness. Impulsive-aggression is significantly heritable, suggesting genetic transmission. However, the specific neurobiological mechanisms that mediate genetic risk for impulsive-aggression remain unclear. Here, we review extant data on the genetics and neurobiology of individual differences in impulsive-aggression, with particular attention to the role of genetic variation in Monoamine Oxidase A (MAOA) and its impact on serotonergic signaling within corticolimbic circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • af Klinteberg B, Schalling D, Edman G, Oreland L, Asberg M (1987) Personality correlates of platelet monoamine oxidase (MAO) activity in female and male subjects. Neuropsychobiology 18:89–96

    Google Scholar 

  • Alia-Klein N et al (2008) Brain monoamine oxidase A activity predicts trait aggression. J Neurosci 28:5099–5104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alia-Klein N et al (2011) Gene x disease interaction on orbitofrontal gray matter in cocaine addiction. Arch Gen Psychiatry 68:283–294

    PubMed Central  PubMed  Google Scholar 

  • Amaral DG, Price JL (1984) Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol 230:465–496

    CAS  PubMed  Google Scholar 

  • Anderson SW, Bechara A, Damasio H, Tranel D, Damasio AR (1999) Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nat Neurosci 2:1032–1037

    CAS  PubMed  Google Scholar 

  • Ansorge MS, Hen R, Gingrich JA (2007) Neurodevelopmental origins of depressive disorders. Curr Opin Pharmacol 7:8–17

    CAS  PubMed  Google Scholar 

  • Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306:879–881

    CAS  PubMed  Google Scholar 

  • Arai R et al (2002) Differential subcellular location of mitochondria in rat serotonergic neurons depends on the presence and the absence of monoamine oxidase type B. Neuroscience 114:825–835

    CAS  PubMed  Google Scholar 

  • Baker LA, Jacobson KC, Raine A, Lozano DI, Bezdjian S (2007) Genetic and environmental bases of childhood antisocial behavior: a multi-informant twin study. J Abnorm Psychol 116:219–235

    PubMed Central  PubMed  Google Scholar 

  • Baker LA, Raine A, Liu J, Jacobson KC (2008) Differential genetic and environmental influences on reactive and proactive aggression in children. J Abnorm Child Psychol 36:1265–1278

    PubMed Central  PubMed  Google Scholar 

  • Balciuniene J, Emilsson L, Oreland L, Pettersson U, Jazin E (2002) Investigation of the functional effect of monoamine oxidase polymorphisms in human brain. Hum Genet 110:1–7

    CAS  PubMed  Google Scholar 

  • Baltic S (2011) Crime in the United States 2011—Google books

    Google Scholar 

  • Beitchman JH, Mik HM, Ehtesham S, Douglas L, Kennedy JL (2004) MAOA and persistent, pervasive childhood aggression. Mol Psychiatry 9:546–547

    CAS  PubMed  Google Scholar 

  • Belfrage H, Lidberg L, Oreland L (1992) Platelet monoamine oxidase activity in mentally disordered violent offenders. Acta Psychiatr Scand 85:218–221

    CAS  PubMed  Google Scholar 

  • Best M, Williams JM, Coccaro EF (2002) Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. Proc Natl Acad Sci USA 99:8448–8453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blair RJ, Cipolotti L (2000) Impaired social response reversal. A case of ‘acquired sociopathy’. Brain 123(Pt 6):1122–1141

    PubMed  Google Scholar 

  • Bortolato M et al (2011) Social deficits and perseverative behaviors, but not overt aggression, in MAO-A hypomorphic mice. Neuropsychopharmacology 36:2674–2688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunner HG et al (1993b) X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet 52:1032–1039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993a) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262:578–580

    CAS  PubMed  Google Scholar 

  • Buckholtz JW, Meyer-Lindenberg A (2008) MAOA and the neurogenetic architecture of human aggression. Trends Neurosci 31:120–129

    CAS  PubMed  Google Scholar 

  • Buckholtz JW, Meyer-Lindenberg A (2012) Psychopathology and the human: toward a transdiagnostic model of risk for mental illness. Neuron 74:990–1004

    CAS  PubMed  Google Scholar 

  • Butter CM, Snyder DR (1972) Alterations in aversive and aggressive behaviors following orbital frontal lesions in rhesus monkeys. Acta Neurobiol Exp (Wars) 32:525–565

    CAS  Google Scholar 

  • Button TMM, Scourfield J, Martin N, McGuffin P (2004) Do aggressive and non-aggressive antisocial behaviors in adolescents result from the same genetic and environmental effects? Am J Med Genet B Neuropsychiatr Genet 129B:59–63

    PubMed  Google Scholar 

  • Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641

    CAS  PubMed  Google Scholar 

  • Carmichael ST, Price JL (1996) Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 371:179–207

    CAS  PubMed  Google Scholar 

  • Cases O et al (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268:1763–1766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cases O et al (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16:297–307

    CAS  PubMed  Google Scholar 

  • Caspi A et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    CAS  PubMed  Google Scholar 

  • Cavada C, Compañy T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suárez F (2000) The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10:220–242

    CAS  PubMed  Google Scholar 

  • Cerasa A et al (2010) Morphological correlates of MAO A VNTR polymorphism: new evidence from cortical thickness measurement. Behav Brain Res 211:118–124

    CAS  PubMed  Google Scholar 

  • Cirulli ET, Goldstein DB (2007) In vitro assays fail to predict in vivo effects of regulatory polymorphisms. Hum Mol Genet 16:1931–1939

    CAS  PubMed  Google Scholar 

  • Clark L, Manes F (2004) Social and emotional decision-making following frontal lobe injury. Neurocase 10:398–403

    PubMed  Google Scholar 

  • Coccaro EF, Kavoussi RJ, Cooper TB, Hauger RL (1997) Central serotonin activity and aggression: inverse relationship with prolactin response to d-fenfluramine, but not CSF 5-HIAA concentration, in human subjects. Am J Psychiatry 154:1430–1435

    CAS  PubMed  Google Scholar 

  • Coccaro EF, McCloskey MS, Fitzgerald DA, Phan KL (2007) Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol Psychiatry 62:168–178

    PubMed  Google Scholar 

  • Coccaro EF, Sripada CS, Yanowitch RN, Phan KL (2011) Corticolimbic function in impulsive aggressive behavior. Biol Psychiatry 69:1153–1159

    PubMed  Google Scholar 

  • Contini V, Marques FZC, Garcia CED, Hutz MH, Bau CHD (2006) MAOA-uVNTR polymorphism in a Brazilian sample: further support for the association with impulsive behaviors and alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 141B:305–308

    PubMed  Google Scholar 

  • Dannlowski U et al (2009) Reduced amygdala-prefrontal coupling in major depression: association with MAOA genotype and illness severity. Int J Neuropsychopharmacol 12:11–22

    CAS  PubMed  Google Scholar 

  • Daruna JH, Kent EW (1976) Comparison of regional serotonin levels and turnover in the brain of naturally high and low aggressive rats. Brain Res 101:489–501

    CAS  PubMed  Google Scholar 

  • Davis BA, Yu PH, Boulton AA, Wormith JS, Addington D (1983) Correlative relationship between biochemical activity and aggressive behaviour. Prog Neuropsychopharmacol Biol Psychiatry 7:529–535

    CAS  PubMed  Google Scholar 

  • de Boer SF, Caramaschi D, Natarajan D, Koolhaas JM (2009) The vicious cycle towards violence: focus on the negative feedback mechanisms of brain serotonin neurotransmission. Front Behav Neurosci 3:52

    PubMed Central  PubMed  Google Scholar 

  • Derringer J, Krueger RF, Irons DE, Iacono WG (2010) Harsh discipline, childhood sexual assault, and MAOA genotype: an investigation of main and interactive effects on diverse clinical externalizing outcomes. Behav Genet 40:639–648

    PubMed Central  PubMed  Google Scholar 

  • Doudet D et al (1995) Cerebral glucose metabolism, CSF 5-HIAA levels, and aggressive behavior in rhesus monkeys. Am J Psychiatry 152:1782–1787

    CAS  PubMed  Google Scholar 

  • Ducci F et al (2006) A functional polymorphism in the MAOA gene promoter (MAOA-LPR) predicts central dopamine function and body mass index. Mol Psychiatry 11:858–866

    CAS  PubMed  Google Scholar 

  • Ducci F et al (2008) Interaction between a functional MAOA locus and childhood sexual abuse predicts alcoholism and antisocial personality disorder in adult women. Mol Psychiatry 13:334–347

    CAS  PubMed  Google Scholar 

  • Edwards AC et al (2010) MAOA-uVNTR and early physical discipline interact to influence delinquent behavior. J Child Psychol Psychiatry 51:679–687

    PubMed Central  PubMed  Google Scholar 

  • Eklund J, Alm PO, af Klinteberg B (2005) Monoamine oxidase activity and tri-iodothyronine level in violent offenders with early behavioural problems. Neuropsychobiology 52:122–129

    Google Scholar 

  • Eley TC, Lichtenstein P, Moffitt TE (2003) A longitudinal behavioral genetic analysis of the etiology of aggressive and nonaggressive antisocial behavior. Dev Psychopathol 15:383–402

    PubMed  Google Scholar 

  • Enoch M-A, Steer CD, Newman TK, Gibson N, Goldman D (2010) Early life stress, MAOA, and gene-environment interactions predict behavioral disinhibition in children. Genes Brain Behav 9:65–74

    PubMed Central  PubMed  Google Scholar 

  • Fairbanks LA et al (2004) Genetic contributions to social impulsivity and aggressiveness in vervet monkeys. Biol Psychiatry 55:642–647

    PubMed  Google Scholar 

  • Fan J, Fossella J, Sommer T, Wu Y, Posner MI (2003) Mapping the genetic variation of executive attention onto brain activity. Proc Natl Acad Sci USA 100:7406–7411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farrington DP, Jolliffe D, Loeber R, Stouthamer-Loeber M, Kalb LM (2001) The concentration of offenders in families, and family criminality in the prediction of boys’ delinquency. J Adolesc 24:579–596

    CAS  PubMed  Google Scholar 

  • Fergusson DM, Boden JM, Horwood LJ, Miller AL, Kennedy MA (2011) MAOA, abuse exposure and antisocial behaviour: 30-year longitudinal study. Br J Psychiatry 198:457–463

    PubMed Central  PubMed  Google Scholar 

  • Ferris CF (2005) Vasopressin/oxytocin and aggression. Novartis Found. Symp 268:190–8– discussion 198–200– 242–53

    Google Scholar 

  • Foley DL et al (2004) Childhood adversity, monoamine oxidase a genotype, and risk for conduct disorder. Arch Gen Psychiatry 61:738–744

    CAS  PubMed  Google Scholar 

  • Fowler JS et al (1997) Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging 18:431–435

    CAS  PubMed  Google Scholar 

  • Frazzetto G et al (2007) Early trauma and increased risk for physical aggression during adulthood: the moderating role of MAOA genotype. PLoS ONE 2:e486

    PubMed Central  PubMed  Google Scholar 

  • Gallardo-Pujol D, Andrés-Pueyo A, Maydeu-Olivares A (2013) MAOA genotype, social exclusion and aggression: an experimental test of a gene-environment interaction. Genes Brain Behav 12:140–145

    CAS  PubMed  Google Scholar 

  • Garpenstrand H, Annas P, Ekblom J, Oreland L, Fredrikson M (2001) Human fear conditioning is related to dopaminergic and serotonergic biological markers. Behav Neurosci 115:358–364

    CAS  PubMed  Google Scholar 

  • Gelhorn HL et al (2005) Genetic and environmental influences on conduct disorder: symptom, domain and full-scale analyses. J Child Psychol Psychiatry 46:580–591

    PubMed  Google Scholar 

  • Gelhorn HL et al (2006) Common and specific genetic influences on aggressive and nonaggressive conduct disorder domains. J Am Acad Child Adolesc Psychiatry 45:570–577

    PubMed  Google Scholar 

  • Ghashghaei HT, Barbas H (2002) Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115:1261–1279

    CAS  PubMed  Google Scholar 

  • Ghashghaei HT, Hilgetag CC, Barbas H (2007) Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage 34:905–923

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gingrich JA, Ansorge MS, Merker R, Weisstaub N, Zhou M (2003) New lessons from knockout mice: the role of serotonin during development and its possible contribution to the origins of neuropsychiatric disorders. CNS Spectr 8:572–577

    PubMed  Google Scholar 

  • Godar SC et al (2010) Maladaptive defensive behaviours in monoamine oxidase A-deficient mice. Int J Neuropsychopharmacol 14:1195–1207

    PubMed Central  PubMed  Google Scholar 

  • Good CD (2003) Dosage-sensitive X-linked locus influences the development of amygdala and orbitofrontal cortex, and fear recognition in humans. Brain 126:2431–2446

    PubMed  Google Scholar 

  • Goursaud A-PS, Bachevalier J (2007) Social attachment in juvenile monkeys with neonatal lesion of the hippocampus, amygdala and orbital frontal cortex. Behav Brain Res 176:75–93

    PubMed  Google Scholar 

  • Grimsby J, Chen K, Wang LJ, Lan NC, Shih JC (1991) Human monoamine oxidase A and B genes exhibit identical exon-intron organization

    Google Scholar 

  • Gross C, Hen R (2004) Genetic and environmental factors interact to influence anxiety. Neurotox Res 6:493–501

    PubMed  Google Scholar 

  • Haberstick BC et al (2013) MAOA genotype, childhood maltreatment, and their interaction in the etiology of adult antisocial behaviors. Biol Psychiatry. doi:10.1016/j.biopsych.2013.03.028

    PubMed  Google Scholar 

  • Heinrichs M, Domes G (2008) Neuropeptides and social behaviour: effects of oxytocin and vasopressin in humans. Prog Brain Res 170:337–350

    CAS  PubMed  Google Scholar 

  • Huang Y–Y et al (2004) An association between a functional polymorphism in the monoamine oxidase a gene promoter, impulsive traits and early abuse experiences. Neuropsychopharmacology 29:1498–1505

    CAS  PubMed  Google Scholar 

  • Hudziak JJ et al (2003) Individual differences in aggression: genetic analyses by age, gender, and informant in 3-, 7-, and 10-year-old Dutch twins. Behav Genet 33:575–589

    CAS  PubMed  Google Scholar 

  • Jacob CP et al (2005) Cluster B personality disorders are associated with allelic variation of monoamine oxidase A activity. Neuropsychopharmacology 30:1711–1718

    CAS  PubMed  Google Scholar 

  • Jahng JW et al (1997) Localization of monoamine oxidase A and B mRNA in the rat brain by in situ hybridization. Synapse 25:30–36

    CAS  PubMed  Google Scholar 

  • Jönsson EG et al (2000) A promoter polymorphism in the monoamine oxidase A gene and its relationships to monoamine metabolite concentrations in CSF of healthy volunteers. J Psychiatr Res 34:239–244

    PubMed  Google Scholar 

  • Kalin NH et al (2008) The serotonin transporter genotype is associated with intermediate brain phenotypes that depend on the context of eliciting stressor. Mol Psychiatry 13:1021–1027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim-Cohen J et al (2006) MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol Psychiatry 11:903–913

    CAS  PubMed  Google Scholar 

  • Kinnally EL et al (2009) Parental care moderates the influence of MAOA-uVNTR genotype and childhood stressors on trait impulsivity and aggression in adult women. Psychiatr Genet 19:126–133

    PubMed Central  PubMed  Google Scholar 

  • Krueger RF, South SC (2009) Externalizing disorders: cluster 5 of the proposed meta-structure for DSM-V and ICD-11. Psychol Med 39:2061–2070

    CAS  PubMed  Google Scholar 

  • Kuepper Y, Grant P, Wielpuetz C, Hennig J (2013) MAOA-uVNTR genotype predicts interindividual differences in experimental aggressiveness as a function of the degree of provocation. Behav Brain Res 247:73–78

    PubMed  Google Scholar 

  • Levitt P, Pintar JE, Breakefield XO (1982) Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci USA 79:6385–6389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Machado CJ, Bachevalier J (2006) The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta). Behav Neurosci 120:761–786

    PubMed  Google Scholar 

  • Manuck SB, Flory JD, Ferrell RE, Mann JJ, Muldoon MF (2000) A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res 95:9–23

    CAS  PubMed  Google Scholar 

  • Manuck SB, Flory JD, Muldoon MF, Ferrell RE (2002) Central nervous system serotonergic responsivity and aggressive disposition in men. Physiol Behav 77:705–709

    CAS  PubMed  Google Scholar 

  • Márquez C et al (2013) Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Transl Psychiatry 3:e216

    PubMed Central  PubMed  Google Scholar 

  • McDermott R, Tingley D, Cowden J, Frazzetto G, Johnson DDP (2009) Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proc Nat Acad Sci 106:2118–2123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mertins V, Schote AB, Hoffeld W, Griessmair M, Meyer J (2011) Genetic susceptibility for individual cooperation preferences: the role of monoamine oxidase A gene (MAOA) in the voluntary provision of public goods. PLoS ONE 6:e20959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer-Lindenberg A et al (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA 103:6269–6274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer-Lindenberg A et al (2009) Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Mol Psychiatry 14:968–975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125:167–181

    CAS  PubMed  Google Scholar 

  • Mukasa H, Nakamura J, Yamada S, Inoue M, Nakazawa Y (1990) Platelet monoamine oxidase activity and personality traits in alcoholics and methamphetamine dependents. Drug Alcohol Depend 26:251–254

    CAS  PubMed  Google Scholar 

  • Nicotra A, Pierucci F, Parvez H, Senatori O (2004) Monoamine oxidase expression during development and aging. Neurotoxicology 25:155–165

    CAS  PubMed  Google Scholar 

  • Nilsson KW et al (2006) Role of monoamine oxidase A genotype and psychosocial factors in male adolescent criminal activity. Biol Psychiatry 59:121–127

    CAS  PubMed  Google Scholar 

  • Nymberg C et al (2013) Neural mechanisms of attention-deficit/hyperactivity disorder symptoms are stratified by MAOA genotype. Biol Psychiatry. doi:10.1016/j.biopsych.2013.03.027

    PubMed  Google Scholar 

  • Ongür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    PubMed  Google Scholar 

  • Parsian A, Cloninger CR, Sinha R, Zhang ZH (2003) Functional variation in promoter region of monoamine oxidase A and subtypes of alcoholism: haplotype analysis. Am J Med Genet B Neuropsychiatr Genet 117B:46–50

    PubMed  Google Scholar 

  • Passamonti L et al (2008) Genetically dependent modulation of serotonergic inactivation in the human prefrontal cortex. NeuroImage 40:1264–1273

    PubMed  Google Scholar 

  • Perris C, Eisemann M, Knorring von L, Oreland L, Perris H (1984) Personality traits and monoamine oxidase activity in platelets in depressed patients. Neuropsychobiology 12:201–205

    Google Scholar 

  • Popova NK et al (2001) Behavioral characteristics of mice with genetic knockout of monoamine oxidase type A. Neurosci Behav Physiol 31:597–602

    CAS  PubMed  Google Scholar 

  • Prochazka H, Anderberg UM, Oreland L, Knorring LV, Agren H (2003) Self-rated aggression related to serum testosterone and platelet MAO activity in female patients with the fibromyalgia syndrome. World J Biol Psychiatry 4:35–41

    PubMed  Google Scholar 

  • Raine A et al (1994) Selective reductions in prefrontal glucose metabolism in murderers. Biol Psychiatry 36:365–373

    CAS  PubMed  Google Scholar 

  • Raine A et al (1998) Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behav Sci Law 16:319–332

    CAS  PubMed  Google Scholar 

  • Raine A, Buchsbaum M, LaCasse L (1997) Brain abnormalities in murderers indicated by positron emission tomography. Biol Psychiatry 42:495–508

    CAS  PubMed  Google Scholar 

  • Rebsam A, Seif I, Gaspar P (2002) Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J Neurosci 22:8541–8552

    CAS  PubMed  Google Scholar 

  • Reif A et al (2007) Nature and nurture predispose to violent behavior: serotonergic genes and adverse childhood environment. Neuropsychopharmacology 32:2375–2383

    CAS  PubMed  Google Scholar 

  • Reti IM et al (2011) Monoamine oxidase A regulates antisocial personality in whites with no history of physical abuse. Compr Psychiatry 52:188–194

    PubMed Central  PubMed  Google Scholar 

  • Roiser JP et al (2009) A genetically mediated bias in decision making driven by failure of amygdala control. J Neurosci 29:5985–5991

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabol S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter

    Google Scholar 

  • Saito T et al (2002) Analysis of monoamine oxidase A (MAOA) promoter polymorphism in Finnish male alcoholics. Psychiatry Res 109:113–119

    CAS  PubMed  Google Scholar 

  • Salichon N et al (2001) Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. J Neurosci 21:884–896

    CAS  PubMed  Google Scholar 

  • Saura J et al (1996a) Localization of monoamine oxidases in human peripheral tissues. Life Sci 59:1341–1349

    CAS  PubMed  Google Scholar 

  • Saura J et al (1996b) Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. Neuroscience 70:755–774

    CAS  PubMed  Google Scholar 

  • Scott AL, Bortolato M, Chen K, Shih JC (2008) Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. NeuroReport 19:739–743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shih J, Thompson R (1999) Monoamine oxidase in neuropsychiatry and behavior. Am J Hum Genet 65:593–598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shih JC, Chen K (1999) MAO-A and -B gene knock-out mice exhibit distinctly different behavior. Neurobiology (Bp) 7:235–246

    CAS  Google Scholar 

  • Sjöberg RL et al (2008) A non-additive interaction of a functional MAO-A VNTR and testosterone predicts antisocial behavior. Neuropsychopharmacology 33:425–430

    PubMed Central  PubMed  Google Scholar 

  • Skondras M, Markianos M, Botsis A, Bistolaki E, Christodoulou G (2004) Platelet monoamine oxidase activity and psychometric correlates in male violent offenders imprisoned for homicide or other violent acts. Eur Arch Psychiatry Clin Neurosci 254:380–386

    PubMed  Google Scholar 

  • Stadler C et al (2007) Reduced anterior cingulate activation in aggressive children and adolescents during affective stimulation: association with temperament traits. J Psychiatr Res 41:410–417

    PubMed  Google Scholar 

  • Stark P, Fuller RW, Wong DT (1985) The pharmacologic profile of fluoxetine. J Clin Psychiatry 46:7–13

    CAS  PubMed  Google Scholar 

  • Stefanacci L, Amaral DG (2002) Some observations on cortical inputs to the macaque monkey amygdala: an anterograde tracing study. J Comp Neurol 451:301–323

    PubMed  Google Scholar 

  • Sterzer P, Stadler C, Krebs A, Kleinschmidt A, Poustka F (2005) Abnormal neural responses to emotional visual stimuli in adolescents with conduct disorder. Biol Psychiatry 57:7–15

    PubMed  Google Scholar 

  • Strolin Benedetti M, Dostert P, Tipton KF (1992) Developmental aspects of the monoamine-degrading enzyme monoamine oxidase. Dev Pharmacol Ther 18:191–200

    CAS  PubMed  Google Scholar 

  • Suomi SJ (2003) Gene-environment interactions and the neurobiology of social conflict. Ann N Y Acad Sci 1008:132–139

    PubMed  Google Scholar 

  • Syagailo YV et al (2001) Association analysis of the functional monoamine oxidase A gene promoter polymorphism in psychiatric disorders. Am J Med Genet 105:168–171

    CAS  PubMed  Google Scholar 

  • Tost H et al (2010) A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc Nat Acad Sci 107:13936–13941

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsang D, Ho KP, Wen HL (1986) Ontogenesis of multiple forms of monoamine oxidase in rat brain regions and liver. Dev Neurosci 8:243–250

    CAS  PubMed  Google Scholar 

  • Valzelli L, Bernasconi S (1979) Aggressiveness by isolation and brain serotonin turnover changes in different strains of mice. Neuropsychobiology 5:129–135

    CAS  PubMed  Google Scholar 

  • Valzelli L, Bernasconi S, Dalessandro M (1981b) Effect of tryptophan administration on spontaneous and P-CPA-induced muricidal aggression in laboratory rats. Pharmacol Res Commun 13:891–897

    CAS  PubMed  Google Scholar 

  • Valzelli L, Garattini S, Bernasconi S, Sala A (1981a) Neurochemical correlates of muricidal behavior in rats. Neuropsychobiology 7:172–178

    CAS  PubMed  Google Scholar 

  • van Beijsterveldt CEM, Verhulst FC, Molenaar PCM, Boomsma DI (2004) The genetic basis of problem behavior in 5-year-old Dutch twin pairs. Behav Genet 34:229–242

    PubMed  Google Scholar 

  • Verdejo-García A et al (2013) Article in press. Drug Alcohol Depend 1–4. doi:10.1016/j.drugalcdep.2013.04.031

  • Vergnes M, Kempf E (1981) Tryptophan deprivation: effects on mouse-killing and reactivity in the rat. Pharmacol Biochem Behav 14(Suppl 1):19–23

    CAS  PubMed  Google Scholar 

  • Wakschlag LS et al (2010) Interaction of prenatal exposure to cigarettes and MAOA genotype in pathways to youth antisocial behavior. Mol Psychiatry 15:928–937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waters H, Hyder AA, Rajkotia Y, Basu S, Rehwinkel JA (2004) The economic dimensions of interpersonal violence/editorial committee: Hugh Waters…[et al.]

    Google Scholar 

  • Weder N et al (2013) MAOA genotype, maltreatment, and aggressive behavior: the changing impact of genotype at varying levels of trauma. Biol Psychiatry 65:417–424

    Google Scholar 

  • Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW (1985) Distinct monoamine oxidase A and B populations in primate brain. Science 230:181–183

    CAS  PubMed  Google Scholar 

  • Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25:439–456

    CAS  PubMed  Google Scholar 

  • Westlund KN, Krakower TJ, Kwan SW, Abell CW (1993) Intracellular distribution of monoamine oxidase A in selected regions of rat and monkey brain and spinal cord. Brain Res 612:221–230

    CAS  PubMed  Google Scholar 

  • Widom CS, Brzustowicz LM (2006) MAOA and the ‘cycle of violence:’ childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. BPS 60:684–689

    CAS  Google Scholar 

  • Williams LM et al (2009) A polymorphism of the MAOA gene is associated with emotional brain markers and personality traits on an antisocial index. Neuropsychopharmacology 34:1797–1809

    CAS  PubMed  Google Scholar 

  • Willoughby J et al (1988) Monoamine oxidase activity and distribution in marmoset brain: implications for MPTP toxicity. Neurosci Lett 90:100–106

    CAS  PubMed  Google Scholar 

  • Yeh MT, Coccaro EF, Jacobson KC (2010) Multivariate behavior genetic analyses of aggressive behavior subtypes. Behav Genet 40:603–617

    PubMed Central  PubMed  Google Scholar 

  • Ziermans T et al (2012) Working memory brain activity and capacity link MAOA polymorphism to aggressive behavior during development. Transl Psychiatry 2:e85

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua W. Buckholtz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dorfman, H.M., Meyer-Lindenberg, A., Buckholtz, J.W. (2013). Neurobiological Mechanisms for Impulsive-Aggression: The Role of MAOA. In: Miczek, K., Meyer-Lindenberg, A. (eds) Neuroscience of Aggression. Current Topics in Behavioral Neurosciences, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2013_272

Download citation

Publish with us

Policies and ethics