Skip to main content

Neurogenetics of Aggressive Behavior: Studies in Rodents

  • Chapter
  • First Online:
Book cover Neuroscience of Aggression

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 17))

Abstract

Aggressive behavior is observed in many animal species, such as insects, fish, lizards, frogs, and most mammals including humans. This wide range of conservation underscores the importance of aggressive behavior in the animals’ survival and fitness, and the likely heritability of this behavior. Although typical patterns of aggressive behavior differ between species, there are several concordances in the neurobiology of aggression among rodents, primates, and humans. Studies with rodent models may eventually help us to understand the neurogenetic architecture of aggression in humans. However, it is important to recognize the difference between the ecological and ethological significance of aggressive behavior (species-typical aggression) and maladaptive violence (escalated aggression) when applying the findings of aggression research using animal models to human or veterinary medicine. Well-studied rodent models for aggressive behavior in the laboratory setting include the mouse (Mus musculus), rat (Rattus norvegicus), hamster (Mesocricetus auratus), and prairie vole (Microtus ochrogaster). The neural circuits of rodent aggression have been gradually elucidated by several techniques, e.g., immunohistochemistry of immediate-early gene (c-Fos) expression, intracranial drug microinjection, in vivo microdialysis, and optogenetics techniques. Also, evidence accumulated from the analysis of gene-knockout mice shows the involvement of several genes in aggression. Here, we review the brain circuits that have been implicated in aggression, such as the hypothalamus, prefrontal cortex (PFC), dorsal raphe nucleus (DRN), nucleus accumbens (NAc), and olfactory system. We then discuss the roles of glutamate and γ-aminobutyric acid (GABA), excitatory and inhibitory amino acids in the brain, as well as their receptors, in controlling aggressive behavior, focusing mainly on recent findings. At the end of this chapter, we discuss how genes can be identified that underlie individual differences in aggression, using the so-called forward genetics approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczyk A, Mejias R, Takamiya K, Yocum J, Krasnova IN, Calderon J, Cadet JL, Huganir RL, Pletnikov MV, Wang T (2012) GluA3-deficiency in mice is associated with increased social and aggressive behavior and elevated dopamine in striatum. Behav Brain Res 229:265–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adams DB (2006) Brain mechanisms of aggressive behavior: an updated review. Neurosci Biobehav Rev 30:304–318

    PubMed  Google Scholar 

  • Adell A, Celada P, Abellán MT, Artigas F (2002) Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Brain Res Rev 39:154–180

    CAS  PubMed  Google Scholar 

  • Ago Y, Araki R, Yano K, Kawasaki T, Chaki S, Nakazato A, Onoe H, Hashimoto H, Baba A, Takuma K, Matsuda T (2012) The selective metabotropic glutamate 2/3 receptor agonist MGS0028 reverses isolation rearing-induced abnormal behaviors in mice. J Pharmacol Sci 118:295–298

    CAS  PubMed  Google Scholar 

  • Alenina N, Kikic D, Todiras M, Mosienko V, Qadri F, Plehm R, Boyé P, Vilianovitch L, Sohr R, Tenner K, Hörtnagl H, Bader M (2009) Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc Nat Acad Sci USA 106:10332–10337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Angoa-Pérez M, Kane MJ, Briggs DI, Sykes CE, Shah MM, Francescutti DM, Rosenberg DR, Thomas DM, Kuhn DM (2012) Genetic depletion of brain 5HT reveals a common molecular pathway mediating compulsivity and impulsivity. J Neurochem 121:974–984

    PubMed Central  PubMed  Google Scholar 

  • Anstrom KK, Miczek KA, Budygin EA (2009) Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience 161:3–12

    CAS  PubMed  Google Scholar 

  • Audero E, Mlinar B, Baccini G, Skachokova ZK, Corradetti R, Gross C (2013) Suppression of serotonin neuron firing increases aggression in mice. J Neurosci 33:8678–8688

    Google Scholar 

  • Audet MC, Goulet S, Doré FY (2009) Impaired social motivation and increased aggression in rats subchronically exposed to phencyclidine. Physiol Behav 96:394–398

    CAS  PubMed  Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–667

    CAS  PubMed  Google Scholar 

  • Bannai M, Fish EW, Faccidomo S, Miczek KA (2007) Anti-aggressive effects of agonists at 5-HT1B receptors in the dorsal raphe nucleus of mice. Psychopharmacology 193:295–304

    CAS  PubMed  Google Scholar 

  • Baron RA, Richardson DR (1994) Human aggression, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Bean NJ, Wysocki CJ (1989) Vomeronasal organ removal and female mouse aggression: The role of experience. Physiol Behav 45:875–882

    CAS  PubMed  Google Scholar 

  • Belozertseva IV, Bespalov AY (1999) Effects of NMDA receptor channel blockade on aggression in isolated male mice. Aggress Behav 25:381–396

    CAS  Google Scholar 

  • Berkowitz L (1993) Aggression: Its causes, consequencecs and control. Temple University Press, Philadelphia

    Google Scholar 

  • Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABAB receptors. Physiol Rev 84:835–867

    CAS  PubMed  Google Scholar 

  • Blanchard DC, Blanchard RJ (2003) What can animal aggression research tell us about human aggression? Horm Behav 44:171–177

    PubMed  Google Scholar 

  • Blanchard RJ, Blanchard DC (1977) Aggressive behavior in the rat. Behav Biol 21:197–224

    CAS  PubMed  Google Scholar 

  • Blanchard RJ, Hori K, Blanchard DC, Hall J (1987) Ethanol effects on aggression of rats selected for different levels of aggressiveness. Pharmacol Biochem Behav 27:641–644

    CAS  PubMed  Google Scholar 

  • Blanchard RJ, O’Donnell V, Caroline Blanchard D (1979) Attack and defensive behaviors in the albino mouse. Aggress Behav 5:341–352

    Google Scholar 

  • Blanchard RJ, Ohl F, van Kampen M, Blanchard DC, Fuchs E (2001) Attack and defense in conspecific fighting in tree shrews (Tupaia belangeri). Aggress Behav 27:139–148

    Google Scholar 

  • Bond AJ, Curran HV, Bruce MS, O’Sullivan G, Shine P (1995) Behavioural aggression in panic disorder after 8 weeks’ treatment with alprazolam. J Affect Disord 35:117–123

    CAS  PubMed  Google Scholar 

  • Bortolato M, Godar SC, Melis M, Soggiu A, Roncada P, Casu A, Flore G, Chen K, Frau R, Urbani A, Castelli MP, Devoto P, Shih JC (2012) NMDARs mediate the role of monoamine oxidase-A in pathological aggression. J Neurosci 32:8574–8582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowler CM, Cushing BS, Carter CS (2002) Social factors regulate female–female aggression and affiliation in prairie voles. Physiol Behav 76:559–566

    CAS  PubMed  Google Scholar 

  • Brain PF (1979) Differentiating types of attack and defense in rodents. In: Brain PF and Benton D (eds.) Multidiscriplinary approaches to aggression research, Elsevier, Amsterdam, p. 53–77

    Google Scholar 

  • Brennan PA, Keverne EB (2004) Something in the Air? New Insights into Mammalian Pheromones. Curr Biol 14:R81–R89

    CAS  PubMed  Google Scholar 

  • Brodkin ES, Goforth SA, Keene AH, Fossella JA, Silver LM (2002) Identification of quantitative trait loci that affect aggressive behavior in mice. J Neurosci 22:1165–1170

    CAS  PubMed  Google Scholar 

  • Brody JF, DeFeudis PA, DeFeudis FV (1969) Effects of micro-injections of L-glutamate into the hypothalamus on attack and flight behaviour in cats. Nature 224:1330

    CAS  PubMed  Google Scholar 

  • Bryant CD, Kole LA, Guido MA, Sokoloff G, Palmer AA (2012) Congenic dissection of a major QTL for methamphetamine sensitivity implicates epistasis. Genes, Brain, and Behavior 11:623–632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cairns RB, MacCombie DJ, Hood KE (1983) A developmental-genetic analysis of aggressive behavior in mice: I. Behavioral outcomes. J Comp Psychol 97:69–89

    CAS  Google Scholar 

  • Caldwell HK, Albers HE (2004) Effect of photoperiod on vasopressin-induced aggression in Syrian hamsters. Horm Behav 46:444–449

    CAS  PubMed  Google Scholar 

  • Canastar A, Maxson SC (2003) Sexual aggression in mice: effects of male strain and of female estrous state. Behav Genet 33:521–528

    PubMed  Google Scholar 

  • Carrillo M, Ricci LA, Melloni RH (2009) Adolescent anabolic androgenic steroids reorganize the glutamatergic neural circuitry in the hypothalamus. Brain Res 1249:118–127

    CAS  PubMed  Google Scholar 

  • Carrillo M, Ricci LA, Melloni RH (2011) Glutamate and the aggression neural circuit in adolescent anabolic steroid-treated Syrian hamsters (Mesocricetus auratus). Behav Neurosci 125:753–763

    CAS  PubMed  Google Scholar 

  • Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Müller U, Aguet M, Babinet C, Shih JC (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268:1763–1766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    CAS  PubMed  Google Scholar 

  • Centenaro LA, Vieira K, Zimmermann N, Miczek KA, Lucion AB, de Almeida RMM (2008) Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacology 201:237–248

    CAS  PubMed  Google Scholar 

  • Chamero P, Katsoulidou V, Hendrix P, Bufe B, Roberts R, Matsunami H, Abramowitz J, Birnbaumer L, Zufall F, Leinders-Zufall T (2011) G protein Gαo is essential for vomeronasal function and aggressive behavior in mice. Proc Nat Acad Sci USA 108:12898–12903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902

    CAS  PubMed  Google Scholar 

  • Chen C, Rainnie DG, Greene RW, Tonegawa S (1994) Abnormal fear response and aggressive behavior in mutant mice deficient for α-calcium-calmodulin kinase II. Science 266:291–294

    CAS  PubMed  Google Scholar 

  • Cherek DR, Lane SD, Pietras CJ, Sharon J, Steinberg JL (2002) Acute effects of baclofen, a γ-aminobutyric acid-B agonist, on laboratory measures of aggressive and escape responses of adult male parolees with and without a history of conduct disorder. Psychopharmacology 164:160–167

    CAS  PubMed  Google Scholar 

  • Clancy AN, Coquelin A, Macrides F, Gorski RA, Noble EP (1984) Sexual behavior and aggression in male mice: involvement of the vomeronasal system. J Neurosci 4:2222–2229

    CAS  PubMed  Google Scholar 

  • Clement J, Simler S, Ciesielski L, Mandel P, Cabib S, Puglisi-Allegra S (1987) Age-dependent changes of brain GABA levels, turnover rates and shock-induced aggressive behavior in inbred strains of mice. Pharmacol Biochem Behav 26:83–88

    CAS  PubMed  Google Scholar 

  • Coccaro EF, Kavoussi RJ, Cooper TB, Hauger RL (1997) Central serotonin activity and aggression: inverse relationship with prolactin response to d-fenfluramine, but not CSF 5-HIAA concentration, in human subjects. Am J Psychiatry 154:1430–1435

    CAS  PubMed  Google Scholar 

  • Couppis MH, Kennedy CH (2008) The rewarding effect of aggression is reduced by nucleus accumbens dopamine receptor antagonism in mice. Psychopharmacology 197:449–456

    CAS  PubMed  Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132:107–124

    CAS  PubMed  Google Scholar 

  • Crawley JN, Schleidt WM, Contrera JF (1975) Does social environment decrease propensity to fight in male mice? Behav Biol 15:73–83

    CAS  PubMed  Google Scholar 

  • Cryan JF, Kaupmann K (2005) Don’t worry “B” happy!: a role for GABAB receptors in anxiety and depression. Trends Pharmacol Sci 26:36–43

    CAS  PubMed  Google Scholar 

  • Cryan JF, Slattery DA (2010) GABAB receptors and depression: current status. Adv Pharmacol 58:427–451

    CAS  PubMed  Google Scholar 

  • Dahlström A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20:398–399

    PubMed  Google Scholar 

  • Davis ES, Marler CA (2004) c-fos Changes following an aggressive encounter in female California mice: a synthesis of behavior, hormone changes and neural activity. Neuroscience 127:611–624

    CAS  PubMed  Google Scholar 

  • de Almeida RMM, Ferrari PF, Parmigiani S, Miczek KA (2005) Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol 526:51–64

    PubMed  Google Scholar 

  • de Almeida RMM, Rosa MM, Santos DM, Saft DM, Benini Q, Miczek KA (2006) 5-HT1B receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology 185:441–450

    CAS  PubMed  Google Scholar 

  • de Almeida RMM, Rowlett JK, Cook JM, Yin W, Miczek KA (2004) GABAA/α1 receptor agonists and antagonists: effects on species-typical and heightened aggressive behavior after alcohol self-administration in mice. Psychopharmacology 172:255–263

    PubMed  Google Scholar 

  • de Boer SF, Caramaschi D, Natarajan D, Koolhaas JM (2009) The vicious cycle towards violence: focus on the negative feedback mechanisms of brain serotonin neurotransmission. Front Behav Neurosci 3:52

    PubMed Central  PubMed  Google Scholar 

  • de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526:125–139

    PubMed  Google Scholar 

  • DeBold JF, Miczek KA (1981) Sexual dimorphism in the hormonal control of aggressive behavior of rats. Pharmacol Biochem Behav 1:89–93

    Google Scholar 

  • de Bruin JP, van Oyen HG, Van de Poll N (1983) Behavioural changes following lesions of the orbital prefrontal cortex in male rats. Behav Brain Res 10:209–232

    PubMed  Google Scholar 

  • Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delville Y, Mansour KM, Ferris CF (1996) Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus. Physiol Behav 60:25–29

    CAS  PubMed  Google Scholar 

  • Delville Y, de Vries G, Ferris C (2000) Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav Evol 55:53–76

    CAS  PubMed  Google Scholar 

  • Derkach VA, Oh MC, Guire ES, Soderling TR (2007) Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8:101–113

    CAS  PubMed  Google Scholar 

  • Desjardins C, Maruniak JA, Bronson FH (1973) Social rank in house mice: differentiation revealed by ultraviolet visualization of urinary marking patterns. Science 182:939–941

    CAS  PubMed  Google Scholar 

  • Diano S, Naftolin F, Horvath TL (1997) Gonadal steroids target AMPA glutamate receptor-containing neurons in the rat hypothalamus, septum and amygdala: a morphological and biochemical study. Endocrinology 138:778–789

    CAS  PubMed  Google Scholar 

  • Dietch JT, Jennings RK (1988) Aggressive dyscontrol in patients treated with benzodiazepines. J Clin Psychiatry 49:184–188

    CAS  PubMed  Google Scholar 

  • Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322:900–904

    CAS  PubMed  Google Scholar 

  • Dong E, Matsumoto K, Uzunova V, Sugaya I, Takahata H, Nomura H, Watanabe H, Costa E, Guidotti A (2001) Brain 5α-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Nat Acad Sci U S A 98:2849–2854

    CAS  Google Scholar 

  • Dow HC, Kreibich AS, Kaercher KA, Sankoorikal GMV, Pauley ED, Lohoff FW, Ferraro TN, Li H, Brodkin ES (2011) Genetic dissection of intermale aggressive behavior in BALB/cJ and A/J mice. Genes Brain Behav 10:57–68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206

    CAS  PubMed  Google Scholar 

  • Dulac C, Torello AT (2003) Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 4:551–562

    CAS  PubMed  Google Scholar 

  • Duncan GE, Moy SS, Perez A, Eddy DM, Zinzow WM, Lieberman JA, Snouwaert JN, Koller BH (2004) Deficits in sensorimotor gating and tests of social behavior in a genetic model of reduced NMDA receptor function. Behav Brain Res 153:507–519

    CAS  PubMed  Google Scholar 

  • Earley CJ, Leonard BE (1977) The effect of testosterone and cyproterone acetate on the concentration of γ-aminobutyric acid in brain areas of aggressive and non-aggressive mice. Pharmacol Biochem Behav 6:409–413

    CAS  PubMed  Google Scholar 

  • Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erskine MS, Barfield RJ, Goldman BD (1980) Postpartum aggression in rats: II. Dependence on maternal sensitivity to young and effects of experience with pregnancy and parturition. J Comp Physiol Psychol 94:495–505

    CAS  PubMed  Google Scholar 

  • Faccidomo S, Bannai M, Miczek KA (2008) Escalated aggression after alcohol drinking in male mice: dorsal raphé and prefrontal cortex serotonin and 5-HT1B receptors. Neuropsychopharmacology 33:2888–2899

    CAS  PubMed  Google Scholar 

  • Faccidomo S, Quadros IMH, Takahashi A, Fish EW, Miczek KA (2012) Infralimbic and dorsal raphé microinjection of the 5-HT(1B) receptor agonist CP-93,129: attenuation of aggressive behavior in CFW male mice. Psychopharmacology 222:117–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari PF, van Erp AMM, Tornatzky W, Miczek KA (2003) Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur J Neurosci 17:371–378

    CAS  PubMed  Google Scholar 

  • Ferrari PF, Parmigiani S, Rodgers RJ, Palanza P (1997) Differential effects of chlordiazepoxide on aggressive behavior in male mice: the influence of social factors. Psychopharmacology 134:258–265

    CAS  PubMed  Google Scholar 

  • Ferris CF, Melloni RH, Koppel G, Perry KW, Fuller RW, Delville Y (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 17:4331–4340

    CAS  PubMed  Google Scholar 

  • Ferris CF, Potegal M (1988) Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol Behav 44:235–239

    CAS  PubMed  Google Scholar 

  • File SE, Zharkovsky A, Gulati K (1991) Effects of baclofen and nitrendipine on ethanol withdrawal responses in the rat. Neuropharmacology 30:183–190

    CAS  PubMed  Google Scholar 

  • Fischer SG, Ricci LA, Melloni RH (2007) Repeated anabolic/androgenic steroid exposure during adolescence alters phosphate-activated glutaminase and glutamate receptor 1 (GluR1) subunit immunoreactivity in hamster brain: correlation with offensive aggression. Behav Brain Res 180:77–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fish EW, DeBold JF, Miczek KA (2002) Aggressive behavior as a reinforcer in mice: activation by allopregnanolone. Psychopharmacology 163:459–466

    CAS  PubMed  Google Scholar 

  • Fish EW, DeBold JF, Miczek KA (2005) Escalated aggression as a reward: corticosterone and GABAA receptor positive modulators in mice. Psychopharmacology 182:116–127

    CAS  PubMed  Google Scholar 

  • Fish EW, Faccidomo S, DeBold JF, Miczek KA (2001) Alcohol, allopregnanolone and aggression in mice. Psychopharmacology 153:473–483

    CAS  PubMed  Google Scholar 

  • Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT1B receptor agonist CP-94,253. Psychopharmacology 146:391–399

    CAS  PubMed  Google Scholar 

  • Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6:271–286

    CAS  PubMed  Google Scholar 

  • Forrest D, Yuzaki M, Soares HD, Ng L, Luk DC, Sheng M, Stewart CL, Morgan JI, Connor JA, Curran T (1994) Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13:325–338

    CAS  PubMed  Google Scholar 

  • Gammie SC, Garland T, Stevenson SA (2006) Artificial selection for increased maternal defense behavior in mice. Behav Genet 36:713–722

    PubMed Central  PubMed  Google Scholar 

  • Gammie SC, Nelson RJ (2001) cFOS and pCREB activation and maternal aggression in mice. Brain Res 898:232–241

    CAS  PubMed  Google Scholar 

  • Garcia–Garcia AL, Elizalde N, Matrov D, Harro J, Wojcik SM, Venzala E, Ramírez MJ, Del Rio J, Tordera RM (2009) Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol Psychiat 66:275–282

    PubMed  Google Scholar 

  • Ginsburg B, Allee WC (1942) Some effects of conditioning on social dominance and subordination in inbred strains of mice. Physiol Zool 15:485–506

    Google Scholar 

  • Gobrogge KL, Liu Y, Jia X, Wang Z (2007) Anterior hypothalamic neural activation and neurochemical associations with aggression in pair-bonded male prairie voles. J Comp Neurol 502:1109–1122

    PubMed  Google Scholar 

  • Gourley SL, DeBold JF, Yin W, Cook J, Miczek KA (2005) Benzodiazepines and heightened aggressive behavior in rats: reduction by GABAA1 receptor antagonists. Psychopharmacology 178:232–240

    CAS  PubMed  Google Scholar 

  • Gregorová S, Divina P, Storchova R, Trachtulec Z, Fotopulosova V, Svenson KL, Donahue LR, Paigen B, Forejt J (2008) Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res 18:509–515

    PubMed Central  PubMed  Google Scholar 

  • Grimes JM, Ricci LA, Melloni RH (2003) Glutamic acid decarboxylase (GAD65) immunoreactivity in brains of aggressive, adolescent anabolic steroid-treated hamsters. Horm Behav 44:271–280

    CAS  PubMed  Google Scholar 

  • Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, Costa E (2001) The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5alpha-dihydroprogesterone in psychiatric disorders. Brain Res Brain Res Rev 37:110–115

    CAS  PubMed  Google Scholar 

  • Guillot PV, Chapouthier G (1996) Olfaction, GABAergic neurotransmission in the olfactory bulb, and intermale aggression in mice: modulation by steroids. Behav Genet 26:497–504

    CAS  PubMed  Google Scholar 

  • Guillot PV, Chapouthier G (1998) Intermale aggression, GAD activity in the olfactory bulbs and Y chromosome effect in seven inbred mouse strains. Behav Brain Res 90:203–206

    CAS  PubMed  Google Scholar 

  • Gutzler SJ, Karom M, Erwin WD, Albers HE (2010) Arginine-vasopressin and the regulation of aggression in female Syrian hamsters (Mesocricetus auratus). Eur J Neurosci 31:1655–1663

    PubMed  Google Scholar 

  • Halász J, Liposits Z, Kruk MR, Haller J (2002) Neural background of glucocorticoid dysfunction-induced abnormal aggression in rats: involvement of fear- and stress-related structures. Eur J Neurosci 15:561–569

    PubMed  Google Scholar 

  • Halász J, Tóth M, Kalló I, Liposits Z, Haller J (2006) The activation of prefrontal cortical neurons in aggression–a double labeling study. Behav Brain Res 175:166–175

    PubMed  Google Scholar 

  • Hall RC, Zisook S (1981) Paradoxical reactions to benzodiazepines. Brit J Clin Pharmacol 11:99S–104S

    Google Scholar 

  • Haller J (1995) Biochemical background for an analysis of cost-benefit interrelations in aggression. Neurosci Biobehav Rev 19:599–604

    CAS  PubMed  Google Scholar 

  • Haller J, Abrahám I, Zelena D, Juhász G, Makara GB, Kruk MR (1998) Aggressive experience affects the sensitivity of neurons towards pharmacological treatment in the hypothalamic attack area. Behav Pharmacol 9:469–475

    CAS  PubMed  Google Scholar 

  • Haller J, Halász J, Mikics E, Kruk MR (2004) Chronic glucocorticoid deficiency-induced abnormal aggression, autonomic hypoarousal, and social deficit in rats. J Neuroendocrinol 16:550–557

    CAS  PubMed  Google Scholar 

  • Haller J, Kruk MR (2006) Normal and abnormal aggression: human disorders and novel laboratory models. Neurosci Biobehav Rev 30:292–303

    PubMed  Google Scholar 

  • Haller J, Mikics E, Halász J, Tóth M (2005a) Mechanisms differentiating normal from abnormal aggression: glucocorticoids and serotonin. Eur J Pharmacol 526:89–100

    CAS  PubMed  Google Scholar 

  • Haller J, van de Schraaf J, Kruk MR (2001) Deviant forms of aggression in glucocorticoid hyporeactive rats: a model for “pathological” aggression? J Neuroendocrinol 13:102–107

    CAS  PubMed  Google Scholar 

  • Haller J, Tóth M, Halász J (2005b) The activation of raphe serotonergic neurons in normal and hypoarousal-driven aggression: a double labeling study in rats. Behav Brain Res 161:88–94

    CAS  PubMed  Google Scholar 

  • Haller J, Tóth M, Halász J, de Boer SF (2006) Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness. Physiol Behav 88:173–182

    CAS  PubMed  Google Scholar 

  • Hamshere ML, Green EK, Jones IR, Jones L, Moskvina V, Kirov G, Grozeva D, Nikolov I, Vukcevic D, Caesar S, Gordon-Smith K, Fraser C, Russell E, Breen G, St Clair D, Collier DA, Young AH, Ferrier IN, Farmer A, McGuffin P; Wellcome Trust Case Control Consortium, Holmans PA, Owen MJ, O’Donovan MC, Craddock N (2009) Genetic utility of broadly defined bipolar schizoaffective disorder as a diagnostic concept. Brit J Psychiat 195:23–29

    Google Scholar 

  • Haney M, DeBold JF, Miczek KA (1989) Maternal aggression in mice and rats towards male and female conspecifics. Aggress Behav 15:443–453

    Google Scholar 

  • Hasen NS, Gammie SC (2009) Trpc2 gene impacts on maternal aggression, accessory olfactory bulb anatomy and brain activity. Genes Brain Behav 8:639–649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heiligenberg W (1974) Processes Governing Behavioral States of Readiness. Adv Study Behav 5:173–200

    Google Scholar 

  • Heinz AJ, Beck A, Meyer-Lindenberg A, Sterzer P, Heinz A (2011) Cognitive and neurobiological mechanisms of alcohol-related aggression. Nat Rev Neurosci 12:400–413

    CAS  PubMed  Google Scholar 

  • Hendricks TJ, Fyodorov D V, Wegman LJ, Lelutiu NB, Pehek E a, Yamamoto B, Silver J, Weeber EJ, Sweatt JD, Deneris ES (2003) Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37:233–247

    Google Scholar 

  • Herman JP, Mueller NK, Figueiredo H (2004) Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann N Y Acad Sci 1018:35–45

    CAS  PubMed  Google Scholar 

  • Hess WR, Akert K (1955) Experimental data on role of hypothalamus in mechanism of emotional behavior. AMA Arch Neurol Psychiatry 73:127–129

    CAS  PubMed  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Ann. Rev Neurosci 17:31–108

    CAS  Google Scholar 

  • Hoover WB, Vertes RP (2011) Projections of the medial orbital and ventral orbital cortex in the rat. J Comp Neurol 519:3766–3801

    PubMed  Google Scholar 

  • Hurst JL (1987) Behavioural variation in wild house mice Mus domesticus Rutty: A quantitative assessment of female social organization. Anim Behav 35:1846–1857

    Google Scholar 

  • Insel TR, Preston S, Winslow JT (1995) Mating in the monogamous male: behavioral consequences. Physiol Behav 57:615–627

    CAS  PubMed  Google Scholar 

  • Joppa MA, Meisel RL, Garber MA (1995) c-Fos expression in female hamster brain following sexual and aggressive behaviors. Neuroscience 68:783–792

    CAS  PubMed  Google Scholar 

  • Karli P, Vergnes M, Eclancher F, Schmitt P, Chaurand J (1972) Role of the amygdala in the control of “mouse killing” behaviour in the rat. In: Eleftheriou B (ed) ed. Plenum Press, The Neurobiology of the Amygdala New York

    Google Scholar 

  • Kelley AE & Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311

    Google Scholar 

  • Keverne EB (2002) Mammalian pheromones: from genes to behaviour. Curr Biol 12:R807–R809

    CAS  PubMed  Google Scholar 

  • Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 179:4–29

    CAS  PubMed  Google Scholar 

  • Kollack-Walker S, Newman SW (1995) Mating and agonistic behavior produce different patterns of Fos immunolabeling in the male Syrian hamster brain. Neuroscience 66:721–736

    CAS  PubMed  Google Scholar 

  • Konoshenko MY, Timoshenko TV, Plyusnina IZ (2013) c-Fos activation and intermale aggression in rats selected for behavior toward humans. Behav Brain Res 237:103–106

    CAS  PubMed  Google Scholar 

  • Koolhaas JM (1978) Hypothalamically induced intraspecific aggressive behaviour in the rat. Exp Brain Res 32:365–375

    CAS  PubMed  Google Scholar 

  • Kruk MR (1991) Ethology and pharmacology of hypothalamic aggression in the rat. Neurosci Biobehav Rev 15:527–538

    CAS  PubMed  Google Scholar 

  • Kruk MR, Van der Poel AM, Meelis W, Hermans J, Mostert PG, Mos J, Lohman AH (1983) Discriminant analysis of the localization of aggression-inducing electrode placements in the hypothalamus of male rats. Brain Res 260:61–79

    CAS  PubMed  Google Scholar 

  • Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M (1992) Molecular diversity of the NMDA receptor channel. Nature 358:36–41

    CAS  PubMed  Google Scholar 

  • Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, Natsume R, Watanabe M, Inoue Y, Yagi T, Aizawa S, Arakawa M, Takahashi T, Nakamura Y, Mori H, Mishina M (1996) Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 16:333–344

    CAS  PubMed  Google Scholar 

  • Lagerspetz K (1964) Studies on the aggressive behaviour of mice. Ann Acad Sci Fenn B 131:1–13

    Google Scholar 

  • Lang A, Harro J, Soosaar A, Kõks S, Volke V, Oreland L, Bourin M, Vasar E, Bradwejn J, Männistö PT (1995) Role of N-methyl-d-aspartic acid and cholecystokinin receptors in apomorphine-induced aggressive behaviour in rats. Naunyn Schmiedebergs Arch Pharmacol 351:363–370

    CAS  PubMed  Google Scholar 

  • Le Grevès P, Huang W, Johansson P, Thörnwall M, Zhou Q, Nyberg F (1997) Effects of an anabolic-androgenic steroid on the regulation of the NMDA receptor NR1, NR2A and NR2B subunit mRNAs in brain regions of the male rat. Neurosci Lett 226:61–64

    PubMed  Google Scholar 

  • Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Nat Acad Sci USA 99:6376–6381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Erzurumlu RS, Chen C, Jhaveri S, Tonegawa S (1994) Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell 76:427–437

    CAS  PubMed  Google Scholar 

  • Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lonstein JS, Gammie SC (2002) Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neurosci Biobehav Rev 26:869–888

    PubMed  Google Scholar 

  • Löw K, Crestani F, Keist R, Benke D, Brünig I, Benson JA, Fritschy JM, Rülicke T, Bluethmann H, Möhler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134

    PubMed  Google Scholar 

  • Lucion AB, de Almeida RMM (1996) On the dual nature of maternal aggression in rats. Aggress Behav 22:365–373

    Google Scholar 

  • Mandel P, Ciesielski L, Maitre M, Simler S, Kempf E, Mack G (1981) Inhibitory amino acids, aggressiveness, and convulsions. Adv Biochem Psychopharmacol 29:1–9

    CAS  PubMed  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malek RL, Wang HY, Kwitek AE, Greene AS, Bhagabati N, Borchardt G, Cahill L, Currier T, Frank B, Fu X, Hasinoff M, Howe E, Letwin N, Luu TV, Saeed A, Sajadi H, Salzberg SL, Sultana R, Thiagarajan M, Tsai J, Veratti K, White J, Quackenbush J, Jacob HJ, Lee NH (2006) Physiogenomic resources for rat models of heart, lung and blood disorders. Nat Genet 38:234–239

    CAS  PubMed  Google Scholar 

  • Matsumoto K, Uzunova V, Pinna G, Taki K, Uzunov DP, Watanabe H, Mienville JM, Guidotti A, Costa E (1999) Permissive role of brain allopregnanolone content in the regulation of pentobarbital-induced righting reflex loss. Neuropharmacology 38:955–963

    CAS  PubMed  Google Scholar 

  • Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246:15–18

    Google Scholar 

  • McAllister KH (1990) Ethological analysis of the effects of MK-801 upon aggressive male mice: Similarity to chlordiazepoxide. Pharmacol Biochem Behav 37:101–106

    CAS  PubMed  Google Scholar 

  • Mehta AK, Ticku MK (1999) An update on GABAA receptors. Brain Res Rev 29:196–217

    CAS  PubMed  Google Scholar 

  • Melloni RH, Connor DF, Hang PT, Harrison RJ, Ferris CF (1997) Anabolic-androgenic steroid exposure during adolescence and aggressive behavior in golden hamsters. Physiol Behav 61:359–364

    CAS  PubMed  Google Scholar 

  • Michelsen KA, Schmitz C, Steinbusch HWM (2007) The dorsal raphe nucleus–from silver stainings to a role in depression. Brain Res Rev 55:329–342

    PubMed  Google Scholar 

  • Miczek KA (1974) Intraspecies aggression in rats: effects of d-amphetamine and chlordiazepoxide. Psychopharmacologia 39:275–301

    CAS  PubMed  Google Scholar 

  • Miczek KA, de Almeida RMM (2001) Oral drug self-administration in the home cage of mice: alcohol-heightened aggression and inhibition by the 5-HT1B agonist anpirtoline. Psychopharmacology 157:421–429

    CAS  PubMed  Google Scholar 

  • Miczek KA, Barros HM, Sakoda L, Weerts EM (1998) Alcohol and heightened aggression in individual mice. Alcohol Clin Exp Res 22:1698–1705

    CAS  PubMed  Google Scholar 

  • Miczek KA, de Boer SF, Haller J (2013) Excessive aggression as model of violence: a critical evaluation of current preclinical methods. Psychopharmacology 226:445–458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miczek KA, Faccidomo S, de Almeida RMM, Bannai M, Fish EW, DeBold JF (2004) Escalated aggressive behavior: new pharmacotherapeutic approaches and opportunities. Ann N Y Acad Sci 1036:336–355

    CAS  PubMed  Google Scholar 

  • Miczek KA, Faccidomo S, Fish EW, DeBold JF (2007) Neurochemistry and Molecular Neurobiology of Aggressive Behavior. In: Blaustein J (ed) Behavioral Neurochemistry, Neuroendocrinology and Molecular Neurobiology, 3rd edn. Springer, New York, pp 285–336

    Google Scholar 

  • Miczek KA, Fish EW, DeBold JF (2003) Neurosteroids, GABAA receptors, and escalated aggressive behavior. Horm Behav 44:242–257

    CAS  PubMed  Google Scholar 

  • Miczek KA, Fish EW, DeBold JF, de Almeida RMM (2002) Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems. Psychopharmacology 163:434–458

    CAS  PubMed  Google Scholar 

  • Miczek KA, Haney M (1994) Psychomotor stimulant effects of d-amphetamine, MDMA and PCP: aggressive and schedule-controlled behavior in mice. Psychopharmacology 115:358–365

    CAS  PubMed  Google Scholar 

  • Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125:167–181

    CAS  PubMed  Google Scholar 

  • Miczek KA, O’Donnell JM (1978) Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and L-dopa. Psychopharmacology 57:47–55

    CAS  PubMed  Google Scholar 

  • Miczek KA, O’Donnell JM (1980) Alcohol and chlordiazepoxide increase suppressed aggression in mice. Psychopharmacology 69:39–44

    CAS  PubMed  Google Scholar 

  • Miczek KA, Weerts EM, Tornatzky W, DeBold JF, Vatne TM (1992) Alcohol and “bursts” of aggressive behavior: ethological analysis of individual differences in rats. Psychopharmacology 107:551–563

    CAS  PubMed  Google Scholar 

  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–436

    CAS  PubMed  Google Scholar 

  • Monaghan AP, Bock D, Gass P, Schwäger A, Wolfer DP, Lipp HP, Schütz G (1997) Defective limbic system in mice lacking the tailless gene. Nature 390:515–517

    CAS  PubMed  Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221

    CAS  PubMed  Google Scholar 

  • Mos J, Olivier B (1989) Quantitative and comparative analyses of pro-aggressive actions of benzodiazepines in maternal aggression of rats. Psychopharmacology 97:152–153

    CAS  PubMed  Google Scholar 

  • Mos J, Olivier B, Poth M, Van Oorschot R, Van Aken H (1993) The effects of dorsal raphe administration of eltoprazine, TFMPP and 8-OH-DPAT on resident intruder aggression in the rat. Eur J Pharmacol 238:411–415

    CAS  PubMed  Google Scholar 

  • Mosienko V, Bert B, Beis D, Matthes S, Fink H, Bader M, Alenina N (2012) Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. Transl Psychiatry 2:e122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy MR (1976) Olfactory stimulation and olfactory bulb removal: Effects on territorial aggression in male Syrian golden hamsters. Brain Res 113:95–110

    CAS  PubMed  Google Scholar 

  • Nadeau JH, Singer JB, Matin A, Lander ES (2000) Analysing complex genetic traits with chromosome substitution strains. Nat Genet 24:221–225

    CAS  PubMed  Google Scholar 

  • Natarajan D, Caramaschi D (2010) Animal violence demystified. Front. Behav Neurosci 4:9

    Google Scholar 

  • Natarajan D, de Vries H, Saaltink DJ, de Boer SF, Koolhaas JM (2009) Delineation of violence from functional aggression in mice: an ethological approach. Behav Genet 39:73–90

    PubMed  Google Scholar 

  • Navarro JF, De Castro V, Martín-López M (2008) JNJ16259685, a selective mGlu1 antagonist, suppresses isolation-induced aggression in male mice. Eur J Pharmacol 586:217–220

    CAS  PubMed  Google Scholar 

  • Navarro JF, de Castro V, Martín-López M (2009) Behavioural profile of selective ligands for mGlu7 and mGlu8 glutamate receptors in agonistic encounters between mice. Psicothema 21:475–479

    PubMed  Google Scholar 

  • Navarro JF, Postigo D, Martín-López M, Burón E (2006) Antiaggressive effects of MPEP, a selective antagonist of mGlu5 receptors, in agonistic interactions between male mice. Eur J Pharmacol 551:67–70

    CAS  PubMed  Google Scholar 

  • Nehrenberg DL, Sheikh A, Ghashghaei HT (2012) Identification of neuronal loci involved with displays of affective aggression in NC900 mice. Brain Struct Funct 218:1033–1049

    PubMed  Google Scholar 

  • Nelson M, Pinna G (2011) S-norfluoxetine microinfused into the basolateral amygdala increases allopregnanolone levels and reduces aggression in socially isolated mice. Neuropharmacology 60:1154–1159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson RJ, Chiavegatto S (2001) Molecular basis of aggression. Trends Neurosci 24:713–719

    CAS  PubMed  Google Scholar 

  • Nelson RJ, Demas GE, Huang PL, Fishman MC, Dawson VL, Dawson TM, Snyder SH (1995) Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378:383–386

    CAS  PubMed  Google Scholar 

  • Nelson RJ, Trainor BC (2007) Neural mechanisms of aggression. Nat Rev Neurosci 8:536–546

    CAS  PubMed  Google Scholar 

  • Newman EL, Chu A, Bahamón B, Takahashi A, DeBold JF, Miczek KA (2012) NMDA receptor antagonism: escalation of aggressive behavior in alcohol-drinking mice. Psychopharmacology 224:167–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Newman SW (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann N Y Acad Sci 877:242–257

    CAS  PubMed  Google Scholar 

  • Noirot E, Goyens J, Buhot MC (1975) Aggressive behavior of pregnant mice toward males. Horm Behav 6:9–17

    CAS  PubMed  Google Scholar 

  • Norlin EM, Gussing F, Berghard A (2003) Vomeronasal Phenotype and Behavioral Alterations in Gαi2 Mutant Mice. Curr Biol 13:1214–1219

    CAS  PubMed  Google Scholar 

  • Novotny M, Harvey S, Jemiolo B, Alberts J (1985) Synthetic pheromones that promote inter-male aggression in mice. Proc Nat Acad Sci USA 82:2059–2061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olivier B (2004) Serotonin and aggression. Ann N Y Acad Sci 1036:382–392

    CAS  PubMed  Google Scholar 

  • Palanza P, Parmiglani S, vom Saal FS (1994) Maternal aggression toward infanticidal males of different social status in wild house mice (Mus musculus domesticus). Aggress Behav 20:267–274

    Google Scholar 

  • Pan Y, Xu L, Young KA, Wang Z, Zhang Z (2010) Agonistic encounters and brain activation in dominant and subordinate male greater long-tailed hamsters. Horm Behav 58:478–484

    PubMed Central  PubMed  Google Scholar 

  • Parmigiani S, Rodgers RJ, Palanza P, Mainardi M, Brain PF (1989) The inhibitory effects of fluprazine on parental aggression in female mice are dependent upon intruder sex. Physiol Behav 46:455–459

    CAS  PubMed  Google Scholar 

  • Payne AP, Swanson HH (1970) Agonistic behaviour between pairs of hamsters of the same and opposite sex in a neutral observation area. Behaviour 36:260–269

    CAS  PubMed  Google Scholar 

  • Pellis SM, Iwaniuk AN (2000) Comparative analyses of the role of postnatal development on the expression of play fighting. Dev Psychobiol 36:136–147

    CAS  PubMed  Google Scholar 

  • Pellis SM, Pellis VC (1988) Play-fighting in the Syrian golden hamster Mesocricetus auratus Waterhouse, and its relationship to serious fighting during postweaning development. Dev Psychobiol 21:323–337

    CAS  PubMed  Google Scholar 

  • Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82:443–468

    CAS  PubMed  Google Scholar 

  • Pinna G, Agis-Balboa RC, Pibiri F, Nelson M, Guidotti A, Costa E (2008) Neurosteroid biosynthesis regulates sexually dimorphic fear and aggressive behavior in mice. Neurochem Res 33:1990–2007

    CAS  PubMed  Google Scholar 

  • Pinna G, Agis-Balboa RC, Zhubi A, Matsumoto K, Grayson DR, Costa E, Guidotti A (2006) Imidazenil and diazepam increase locomotor activity in mice exposed to protracted social isolation. Proc Nat Acad Sci U S A 103:4275–4280

    CAS  Google Scholar 

  • Pinna G, Costa E, Guidotti A (2004) Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids. Proc Nat Acad Sci U S A 101:6222–6225

    CAS  Google Scholar 

  • Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A (2003) In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Nat Acad Sci U S A 100:2035–2040

    CAS  Google Scholar 

  • Popova NK, Kulikov AV, Nikulina EM, Kozlachkova EY, Maslova GB (1991) Serotonin metabolism and serotonergic receptors in Norway rats selected for low aggressiveness to man. Aggress Behav 17:207–213

    CAS  Google Scholar 

  • Popova NK, Naumenko EV (1972) Dominance relations and the pituitary-adrenal system in rats. Anim Behav 20:108–111

    CAS  PubMed  Google Scholar 

  • Potegal M (1991) Attack priming and satiation in female golden hamsters: Tests of some alternatives to the aggression arousal interpretation. Aggress Behav 17:327–335

    Google Scholar 

  • Potegal M, Ferris CF (1989) Intraspecific aggression in male hamsters is inhibited by intrahypothalamic vasopressin-receptor antagonist. Aggress Behav 15:311–320

    Google Scholar 

  • Potegal M, Ferris CF, Hebert M, Meyerhoff J, Skaredoff L (1996) Attack priming in female Syrian golden hamsters is associated with a c-fos-coupled process within the corticomedial amygdala. Neuroscience 75:869–880

    CAS  PubMed  Google Scholar 

  • Potegal M, Perumal AS, Barkai AI, Cannova GE, Blau AD (1982) GABA binding in the brains of aggressive and non-aggressive female hamsters. Brain Res 247:315–324

    CAS  PubMed  Google Scholar 

  • Potegal M, Tenbrink L (1984) Behavior of attack-primed and attack-satiated female golden hamsters (Mesocricetus auratus). J Comp Psychol 98:66–75

    Google Scholar 

  • Puglisi-Allegra S, Mandel P (1980) Effects of sodium n-dipropylacetate, muscimol hydrobromide and (R, S) nipecotic acid amide on isolation-induced aggressive behavior in mice. Psychopharmacology 70:287–290

    CAS  PubMed  Google Scholar 

  • Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Wysocki CJ, Ogawa S, Zufall F, Mombaerts P (2002) Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419:70–74

    PubMed  Google Scholar 

  • Quadros IM, Miguel T, DeBold JF, Miczek KA (2009) Opposing action of CRF1 vs. CRF2 receptors in the dorsal raphé: modulation of alcohol-heightened aggression. 2009 neuroscience meeting planner. Society for Neuroscience, Chicago, Program No.445.5/T8

    Google Scholar 

  • Ricci LA, Grimes JM, Knyshevski I, Melloni RH (2005) Repeated cocaine exposure during adolescence alters glutamic acid decarboxylase-65 (GAD65) immunoreactivity in hamster brain: correlation with offensive aggression. Brain Res 1035:131–138

    CAS  PubMed  Google Scholar 

  • Roberts WW, Nagel J (1996) First-order projections activated by stimulation of hypothalamic sites eliciting attack and flight in rats. Behav Neurosci 110:509–527

    CAS  PubMed  Google Scholar 

  • Rodgers RJ, Depaulis A (1982) GABAergic influences on defensive fighting in rats. Pharmacol Biochem Behav 17:451–456

    CAS  PubMed  Google Scholar 

  • Rosenkranz JA, Grace AA (2002) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22:324–337

    CAS  PubMed  Google Scholar 

  • Roubertoux PL, Guillot P-V, Mortaud S, Pratte M, Jamon M, Cohen-Salmon C, Tordjman S (2005) Attack behaviors in mice: from factorial structure to quantitative trait loci mapping. Eur J Pharmacol 526:172–185

    CAS  PubMed  Google Scholar 

  • Rudissaar R, Pruus K, Skrebuhhova-Malmros T, Allikmets L, Matto V (2000) Involvement of GABAergic neurotransmission in the neurobiology of the apomorphine-induced aggressive behavior paradigm, a model of psychotic behavior in rats. Methods Find Exp Clin Pharmacol 22:637–640

    CAS  PubMed  Google Scholar 

  • Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Möhler H (1999) Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401:796–800

    CAS  PubMed  Google Scholar 

  • Rudolph U, Knoflach F (2011) Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat Rev Drug Discov 10:685–697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Russell JW, Greenberg BD, Segal DS (1984) The effects of phencyclidine on spontaneous aggressive behavior in the rat. Biol Psychiat 19:195–202

    CAS  PubMed  Google Scholar 

  • Sandnabba NK (1996) Selective breeding for isolation-induced intermale aggression in mice: associated responses and environmental influences. Behav Genet 26:477–488

    CAS  PubMed  Google Scholar 

  • Saudou F, Amara DA, Dierich A, Lemeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265:1875–1878

    CAS  PubMed  Google Scholar 

  • Schneider R, Hoffmann HJ, Schicknick H, Moutier R (1992) Genetic analysis of isolation-induced aggression. I. Comparison between closely related inbred mouse strains. Behav Neural Biol 57:198–204

    CAS  PubMed  Google Scholar 

  • Schwartzer JJ, Ricci LA, Melloni RH (2009) Interactions between the dopaminergic and GABAergic neural systems in the lateral anterior hypothalamus of aggressive AAS-treated hamsters. Behav Brain Res 203:15–22

    CAS  PubMed  Google Scholar 

  • Scott AL, Bortolato M, Chen K, Shih JC (2008) Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. NeuroReport 19:739–743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scott JP (1942) Genetic differences in the social behavior of inbred strains of mice. J Heredity 33:11–15

    Google Scholar 

  • Scott JP (1966) Agonistic behavior of mice and rats: a review. Am Zool 6:683–701

    CAS  PubMed  Google Scholar 

  • Serra M, Pisu MG, Littera M, Papi G, Sanna E, Tuveri F, Usala L, Purdy RH, Biggio G (2000) Social isolation-induced decreases in both the abundance of neuroactive steroids and GABAA receptor function in rat brain. J Neurochem 75:732–740

    CAS  PubMed  Google Scholar 

  • Sgoifo A, Stilli D, Musso E, Mainardi D, Parmigiani S (2006) Offensive and defensive bite-target topographies in attacks by lactating rats. Aggress Behav 18:47–52

    Google Scholar 

  • Shader RI, Greenblatt DJ (1993) Use of benzodiazepines in anxiety disorders. N Engl J Med 328:1398–1405

    CAS  PubMed  Google Scholar 

  • Shaltiel G, Maeng S, Malkesman O, Pearson B, Schloesser RJ, Tragon T, Rogawski M, Gasior M, Luckenbaugh D, Chen G, Manji HK (2008) Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry 13:858–872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522

    CAS  PubMed  Google Scholar 

  • Shimshek DR, Bus T, Grinevich V, Single FN, Mack V, Sprengel R, Spergel DJ, Seeburg PH (2006) Impaired reproductive behavior by lack of GluR-B containing AMPA receptors but not of NMDA receptors in hypothalamic and septal neurons. Mol Endocrinol 20:219–231

    CAS  PubMed  Google Scholar 

  • Siegel A, Roeling TA, Gregg TR, Kruk MR (1999) Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev 23:359–389

    CAS  PubMed  Google Scholar 

  • Siever LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165:429–442

    PubMed  Google Scholar 

  • Simler S, Puglisi-Allegra S, Mandel P (1982) γ-Aminobutyric acid in brain areas of isolated aggressive or non-aggressive inbred strains of mice. Pharmacol Biochem Behav 16:57–61

    CAS  PubMed  Google Scholar 

  • Stork O, Ji FY, Kaneko K, Stork S, Yoshinobu Y, Moriya T, Shibata S, Obata K (2000) Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res 865:45–58

    CAS  PubMed  Google Scholar 

  • Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male–male aggression in mice deficient for TRP2. Science 295:1493–1500

    CAS  PubMed  Google Scholar 

  • Sukhotina IA, Bespalov AY (2000) Effects of the NMDA receptor channel blockers memantine and MRZ 2/579 on morphine withdrawal-facilitated aggression in mice. Psychopharmacology 149:345–350

    CAS  PubMed  Google Scholar 

  • Svare B, Kinsley CH, Mann MA, Broida J (1984) Infanticide: accounting for genetic variation in mice. Physiol Behav 33:137–152

    CAS  PubMed  Google Scholar 

  • Takada T, Mita A, Maeno A, Sakai T, Shitara H, Kikkawa Y, Moriwaki K, Yonekawa H, Shiroishi T (2008) Mouse inter-subspecific consomic strains for genetic dissection of quantitative complex traits. Genome Res 18:500–508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi A, Kwa C, DeBold JF, Miczek KA (2010a) GABAA receptors in the dorsal raphé nucleus of mice: escalation of aggression after alcohol consumption. Psychopharmacology 211:467–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi A, Quadros IM, de Almeida RMM, Miczek KA (2011) Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology 213:183–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi A, Schilit AN, Kim J, DeBold JF, Koide T, Miczek KA (2012) Behavioral characterization of escalated aggression induced by GABAB receptor activation in the dorsal raphe nucleus. Psychopharmacology 224:155–166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi A, Shimamoto A, Boyson CO, DeBold JF, Miczek KA (2010b) GABAB receptor modulation of serotonin neurons in the dorsal raphé nucleus and escalation of aggression in mice. J Neurosci 30:11771–11780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi A, Tomihara K, Shiroishi T, Koide T (2010c) Genetic mapping of social interaction behavior in B6/MSM consomic mouse strains. Behav Genet 40:366–376

    PubMed Central  PubMed  Google Scholar 

  • Tan KR, Rudolph U, Lüscher C (2011) Hooked on benzodiazepines: GABAA receptor subtypes and addiction. Trends Neurosci 34:188–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tidey JW, Miczek KA (1996) Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 721:140–149

    CAS  PubMed  Google Scholar 

  • Tirindelli R, Mucignat-Caretta C, Ryba NJ (1998) Molecular aspects of pheromonal communication via the vomeronasal organ of mammals. Trends Neurosci 21:482–486

    CAS  PubMed  Google Scholar 

  • Tóth M, Halász J, Mikics E, Barsy B, Haller J (2008) Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behav Neurosci 122:849–854

    PubMed  Google Scholar 

  • Toth M, Tulogdi A, Biro L, Soros P, Mikics E, Haller J (2012) The neural background of hyper-emotional aggression induced by post-weaning social isolation. Behav Brain Res 233:120–129

    PubMed  Google Scholar 

  • Tyler CB, Miczek KA (1982) Effects of phencyclidine on aggressive behavior in mice. Pharmacol Biochem Behav 17:503–510

    CAS  PubMed  Google Scholar 

  • van der Vegt BJ, Lieuwes N, van de Wall EH, Kato K, Moya-Albiol L, Martínez-Sanchis S, de Boer SF, Koolhaas JM (2003) Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats. Behav Neurosci 117:667–674

    PubMed  Google Scholar 

  • van Erp AMM, Miczek KA (1997) Increased aggression after ethanol self-administration in male resident rats. Psychopharmacology 131:287–295

    PubMed  Google Scholar 

  • van Erp AMM, Miczek KA (2000) Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J Neurosci 20:9320–9325

    PubMed  Google Scholar 

  • van Oortmerssen GA, Bakker TC (1981) Artificial selection for short and long attack latencies in wild Mus musculus domesticus. Behav Genet 11:115–126

    PubMed  Google Scholar 

  • Veenema AH (2009) Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol 30:497–518

    CAS  PubMed  Google Scholar 

  • Veening JG, Coolen LM, de Jong TR, Joosten HW, de Boer SF de, Koolhaas JM, Olivier B (2005) Do similar neural systems subserve aggressive and sexual behaviour in male rats? Insights from c-Fos and pharmacological studies. Eur J Pharmacol 526:226–239

    Google Scholar 

  • Veiga CP, Miczek KA, Lucion AB, de Almeida RM (2007) Effect of 5-HT1B receptor agonists injected into the prefrontal cortex on maternal aggression in rats. Braz J Med Biol Res 40:825–830

    CAS  PubMed  Google Scholar 

  • Vekovischeva OY, Aitta-Aho T, Echenko O, Kankaanpää A, Seppälä T, Honkanen A, Sprengel R, Korpi ER (2004) Reduced aggression in AMPA-type glutamate receptor GluR-A subunit-deficient mice. Genes Brain Behav 3:253–265

    CAS  PubMed  Google Scholar 

  • Vlachou S, Markou A (2010) GABAB receptors in reward processes. Adv Pharmacol 58:315–371

    CAS  PubMed  Google Scholar 

  • Volavka J, Nolan KA (2008) Methodological structure for aggression research. Psychiatr Q 79:293–300

    PubMed  Google Scholar 

  • Wall VL, Fischer EK, Bland ST (2012) Isolation rearing attenuates social interaction-induced expression of immediate early gene protein products in the medial prefrontal cortex of male and female rats. Physiol Behav 107:440–450

    CAS  PubMed  Google Scholar 

  • Walletschek H, Raab A (1982) Spontaneous activity of dorsal raphe neurons during defensive and offensive encounters in the tree-shrew. Physiol Behav 28:697–705

    CAS  PubMed  Google Scholar 

  • Wang F, Zhu J, Zhu H, Zhang Q, Lin Z, Hu H (2011) Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334:693–697

    CAS  PubMed  Google Scholar 

  • Wang Z, Hulihan TJ, Insel TR (1997) Sexual and social experience is associated with different patterns of behavior and neural activation in male prairie voles. Brain Res 767:321–332

    CAS  PubMed  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    CAS  PubMed  Google Scholar 

  • Weerts EM, Miller LG, Hood KE, Miczek KA (1992) Increased GABAA-dependent chloride uptake in mice selectively bred for low aggressive behavior. Psychopharmacology 108:196–204

    CAS  PubMed  Google Scholar 

  • Wilmot CA, Vanderwende C, Spoerlein MT (1987) The effects of phencyclidine on fighting in differentially housed mice. Pharmacol Biochem Behav 28:341–346

    CAS  PubMed  Google Scholar 

  • Wise DA (1974) Aggression in the female golden hamster: effects of reproductive state and social isolation. Horm Behav 5:235–250

    CAS  PubMed  Google Scholar 

  • Yadav R, Gupta SC, Hillman BG, Bhatt JM, Stairs DJ, Dravid SM (2012) Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors. PLoS ONE 7:e32969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, He S (2009) Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog Neuropsychopharmacol Biol Psychiatry 33:1173–1177

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aki Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takahashi, A., Miczek, K.A. (2013). Neurogenetics of Aggressive Behavior: Studies in Rodents. In: Miczek, K., Meyer-Lindenberg, A. (eds) Neuroscience of Aggression. Current Topics in Behavioral Neurosciences, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2013_263

Download citation

Publish with us

Policies and ethics