Table 1.

Statistical table.

Data structureType of testStatistic and p value
aNormal distribution2-way ANOVA; Tukey–Kramer testF(11,168) = 14.84, p < 0.001; p < 0.001
bNormal distribution2-way ANOVA; Tukey–Kramer testF(11,72) = 4.02, p < 0.001; p = 0.87
cNormal distribution2-way ANOVA; Tukey–Kramer testF(11,72) = 10.77, p < 0.001; p < 0.001
dNormal distribution2-way ANOVA; Tukey–Kramer testF(11,72) = 13.13, p < 0.001; p < 0.001, p = 0.35
eNormal distribution2-way ANOVA; Tukey–Kramer testF(11,72) = 2.69, p = 0.005; p = 1, p = 0.96
fNormal distribution2-way ANOVA; Tukey–Kramer testF(11,72) = 7.23, p < 0.001; p = 1, p < 0.001
gNormal distribution2-way ANOVA; Tukey–Kramer testF(11,132) = 14.62, p = 0; p < 0.001, p = 0.15
hNormal distribution2-way ANOVA; Tukey–Kramer testF(11,120) = 12.58, p = 0; p < 0.001, p = 0.1
iNonnormal distributionWilcoxon rank-sum testz = –4.099, p = 4.1 × 10–5
jNonnormal distributionWilcoxon rank-sum testz = –3.187, p = 0.0014
KNormal distributiont testt(579) = 5.64, p < 0.001
lNormal distributiont testt(395) = 3.35, p = 9 × 10–4
mNormal distributiont testt(750) = 0.75, p = 0.45
nNormal distributiont testt(408) = 0.64, p = 0.52
oNormal distributiont testt(383) = 2.55, p = 0.011
pNonnormal distributionWilcoxon rank-sum testz = –4.4, p = 1.1 × 10–5
qNonnormal distributionWilcoxon rank-sum testz = ×2.46, p = 0.013
rNormal distributiont testt(720) = 5.29, p < 0.001
sNormal distributiont testt(345) = 2.1, p = 0.03
tNormal distributiont testt(690) = 0.86, p = 0.39
uNormal distributiont testt(308) = 0.08, p = 0.94
vNormal distributiont testt(18) = 2.32, p = 0.032
wNormal distribution2-way ANOVA; Tukey–Kramer testF(11,72) = 13.42, p < 0.001; p = 0.018
xNormal distribution2-way ANOVA; Tukey–Kramer testF(11,72) = 6.57, p < 0.001; p = 0.004, p = 0.41
yNormal distributiont testt(6) = 5.02, p = 0.002
zNormal distribution2-way ANOVA; Tukey–Kramer testF(11,72) = 6.68, p < 0.001; p = 0.01
abNormal distribution2-way ANOVA; Tukey–Kramer testF(11,72) = 1.41, p = 0.18
acNormal distribution2-way ANOVA; Tukey–Kramer testF(11,72) = 5.42, p < 0.001; p = 0.022
adNormal distributiont testt(6) = 2.53, p = 0.04
aeNormal distributiont testt(6) = 3.66, p = 0.01
afNonnormal distributionKruskal–Wallis test; Tukey–Kramer post hoc testH(4) = 14.52, p = 0.0058; p = 0.52, p = 0.011, p = 0.96, p = 0.97
agNonnormal distributionKruskal–Wallis test; Tukey–Kramer post hoc testH(4) = 83.97, p < 0.0001; p < 0.0001, p < 0.001, p = 0.96, p = 0.003
ahNonnormal distributionKruskal–Wallis test; Tukey–Kramer post hoc testH(4) = 13, p = 0.011; p = 0.82, p = 0.005, p = 0.99, p = 0.99
aiNonnormal distributionKruskal–Wallis test; Tukey–Kramer post hoc testH(4) = 17.24, p = 0.0017; p = 0.48, p = 0.04, p = 0.004, p = 0.8, p = 0.99
ajNonnormal distributionKruskal–Wallis test; Tukey–Kramer post hoc testH(4) = 22.06, p < 0.001; p = 0.004, p = 0.039, p = 0.99, p = 0.85