Table 1.

Probability analyses performed to determine data normality for each experiment

Figure/panelAssayGraphed residuals (Y/N)Normality analysisProbability of the goodness of fit (%)Data distribution
2ATraining for short-term memoryNo (graphed and analyzed individual scatterplot)Nonlinear regression with Akaike's Information criterion98.75Parametric
2BTraining for long-term memoryNo (graphed and analyzed individual scatterplot)Nonlinear regression with Akaike's information criterion99.94Parametric
3BContextual short-term memoryYesNonlinear regression with Akaike's information criterion99.96Parametric
3C, leftCued short-term memory pre CSYesNonlinear regression with Akaike's information criterion99.98Parametric
3C, rightCued short-term memory CSYesNonlinear regression with Akaike's information criterion99.97Parametric
3DContextual long-term memoryYesNonlinear regression with Akaike's information criterion99.91Parametric
3E, leftCued long-term memory pre CSYesNonlinear regression with Akaike's information criterion99.86Parametric
3E, rightCued long-term memory CSYesNonlinear regression with Akaike's information criterion99.96Parametric
3FWestern blotting of P-S6YesNonlinear regression with Akaike's information criterion99.97Parametric
3GWestern blotting of P-AktYesNonlinear regression with Akaike's information criterion99.98Parametric
4BProtrusions per micrometerYesNonlinear regression with Akaike's information criterion98.58Parametric
4CLWRYesNonlinear regression with Akaike's information criterion99.85Parametric
4DImmature spines per micrometerYesNonlinear regression with Akaike's information criterion98.91Parametric
4EMature spines per micrometerYesNonlinear regression with Akaike's information criterion86.15*Parametric
5B, leftContextual long-term memory 16-h trainingYesNonlinear regression with Akaike's information criterion96.03Parametric
5B, rightCued long-term memoryNo (graphed and analyzed individual scatterplot)Nonlinear regression with Akaike's information criterion99.94Parametric
5C, rightWestern blotting of P-S6 and P-AktYesNonlinear regression with Akaike's information criterion (for S6 only),95.53Parametric
YesNonlinear regression with Akaike's information criterion (for AKT only)98.17
  • *Because the probability was lower than 90%, an extra sum-of-squares test was subsequently run, which reported that it is not valid to reject the null hypothesis (i.e., the data fit the model).