Table 7.

Statistical table

 Test Data structure Type of test Test statistic p value [Confidence interval]/power a: Overweight − lean Normal distribution Linear mixed-effects model t(61) = −1.47 0.15 [−0.25, 0.04] b: Overweight – lean Normal distribution Linear mixed-effects model t(61) = 1.22 0.23 [−0.09, 0.37] c: Main effect of taste Normal distribution Linear mixed-effects model F(1,180) = 309.11 < 0.0001 1 c: Main effect of health Normal distribution Linear mixed-effects model F(1,180) = 2.78 0.1 0.39 c: Main effect of group Normal distribution Linear mixed-effects model F(1,61) = 0.74 0.39 0.14 c: Health × taste interaction Normal distribution Linear mixed-effects model F(1,180) = 0.51 0.48 0.11 c: Health × group interaction Normal distribution Linear mixed-effects model F(1,180) = 0.2 0.66 0.07 c: Taste × group interaction Normal distribution Linear mixed-effects model F(1,180) = 0.03 0.87 0.05 c: Health × taste × group interaction Normal distribution Linear mixed-effects model F(1,180) = 0.17 0.68 0.07 d: Main effect of taste Normal distribution Linear mixed-effects model F(1,180) = 1.88 0.17 0.28 d: Main effect of health Normal distribution Linear mixed-effects model F(1,180) = 0.96 0.33 0.17 d: Main effect of group Normal distribution Linear mixed-effects model F(1,61) = 1.74 0.19 0.27 d: Health × taste interaction Normal distribution Linear mixed-effects model F(1,180) = 0.37 0.54 0.09 d: Health × group interaction Normal distribution Linear mixed-effects model F(1,180) = 0.61 0.43 0.12 d: Taste × group interaction Normal distribution Linear mixed-effects model F(1,180) = 2.19 0.14 0.32 d: Health × taste × group interaction Normal distribution Linear mixed-effects model F(1,180) = 0.04 0.85 0.05 e: Overweight − lean Normal distribution Two-sample t test t(1,59) = −0.8 0.43 [−38.4, 16.4] f: Overweight – lean Normal distribution Two-sample t test t(1,60) = −0.24 0.81 [−156, 122] g: Overweight – lean Normal distribution Two-sample t test t(1,61) = 1.96 0.06 [−0.09, 8.97] h: Main effect of taste Normal distribution Linear mixed-effects model F(1,169) = 219.13 <0.0001 1 h: Main effect of health Normal distribution Linear mixed-effects model F(1,169) = 4.35 0.04 0.56 h: Main effect of group Normal distribution Linear mixed-effects model F(1,60) = 0.29 0.59 0.08 h: Health × taste interaction Normal distribution Linear mixed-effects model F(1,169) = 8.23 0.005 0.83 h: Health × group interaction Normal distribution Linear mixed-effects model F(1,169) = 13.09 0.0004 0.96 h: Taste × group interaction Normal distribution Linear mixed-effects model F(1,169) = 0.13 0.72 0.07 h: Health × taste × group interaction Normal distribution Linear mixed-effects model F(1,169) = 9.29 0.003 0.87 i: Main effect of taste Normal distribution Linear mixed-effects model F(1,162) = 135.05 < 0.0001 1 i: Main effect of health Normal distribution Linear mixed-effects model F(1,162) = 6.2 0.01 0.71 i: Main effect of group Normal distribution Linear mixed-effects model F(1,60) = 0.01 0.97 0.05 i: Health × taste interaction Normal distribution Linear mixed-effects model F(1,162) = 0.48 0.49 0.11 i: Health × group interaction Normal distribution Linear mixed-effects model F(1,162) = 8.04 0.005 0.82 i: Taste × group interaction Normal distribution Linear mixed-effects model F(1,162) = 0.04 0.84 0.05 i: Health × taste × group interaction Normal distribution Linear mixed-effects model F(1,162) = 7.06 0.009 0.77 j: Main effect of taste Normal distribution Linear mixed-effects model F(1,92) = 59.26 < 0.0001 1 j: Main effect of health Normal distribution Linear mixed-effects model F(1,92) = 41.04 < 0.0001 1 j: Main effect of group Normal distribution Linear mixed-effects model F(1,60) = 1.1 0.29 0.19 j: Health × taste interaction Normal distribution Linear mixed-effects model F(1,92) = 1.52 0.22 0.24 j: Health × group interaction Normal distribution Linear mixed-effects model F(1,92) = 3.21 0.08 0.44 j: Taste × group interaction Normal distribution Linear mixed-effects model F(1,92) = 0.59 0.44 0.12 j: Health × taste × group interaction Normal distribution Linear mixed-effects model F(1,92) = 2.52 0.12 0.36 k: Main effect of taste Normal distribution Linear mixed-effects model F(1,169) = 137.84 <0.0001 1 k: Main effect of health Normal distribution Linear mixed-effects model F(1,169) = 16.2 0.0001 0.98 k: Main effect of group Normal distribution Linear mixed-effects model F(1,60) = 0.26 0.61 0.08 k: Health × taste interaction Normal distribution Linear mixed-effects model F(1,169) = 4.76 0.03 0.59 k: Health × group interaction Normal distribution Linear mixed-effects model F(1,169) = 11.86 0.0007 0.94 k: Taste × group interaction Normal distribution Linear mixed-effects model F(1,169) = 0.05 0.83 0.06 k: Health × taste × group interaction Normal distribution Linear mixed-effects model F(1,169) = 9.98 0.002 0.89 L Normal distribution One-sample t test t(62) = 6.42 <0.0001 [0.26, 0.5] M Normal distribution One-sample t test t(62) = 0.88 0.38 [−0.04, 0.12] n: Main effect of attribute Normal distribution Linear mixed-effects model F(1,61) = 23.24 <0.0001 0.99 n: Main effect of group Normal distribution Linear mixed-effects model F(1,61) = 0.21 0.65 0.07 n: Attribute × group interaction Normal distribution Linear mixed-effects model F(1,61) = 1.54 0.22 0.24 o: Overweight − lean Normal distribution Two-sample t test t(61) = −1.69 0.09 [−0.03, 0.3] p: Overweight − lean Normal distribution Two-sample t test t(61) = 0.45 0.66 [−0.3, 0.19] q: Main effect of attribute Normal distribution Linear mixed-effects model F(1,59) = 22.5 <0.0001 0.99 q: Main effect of group Normal distribution Linear mixed-effects model F(1,59) = 0.2 0.65 0.07 q: Main effect of BIS-11 Normal distribution Linear mixed-effects model F(1,59) =0.01 0.83 0.06 q: Attribute × group interaction Normal distribution Linear mixed-effects model F(1,59) = 1.5 0.23 0.24 q: Attribute × BIS-11 interaction Normal distribution Linear mixed-effects model F(1,59) = 0.1 0.75 0.06 q: Group × BIS-11 interaction Normal distribution Linear mixed-effects model F(1,59) = 0.01 0.93 0.05 q: Attribute × group × BIS-11 interaction Normal distribution Linear mixed-effects model F(1,59) = 0.01 0.93 0.05 r Normal distribution One-sample t test t(62) = 21.53 <0.0001 [0.51, 0.61] s Normal distribution One-sample t-test t(62) = 1.92 0.06 [0, 0.15] t: Main effect of attribute Normal distribution Linear mixed-effects model F(1,61) = 100.92 <0.0001 1 t: Main effect of group Normal distribution Linear mixed-effects model F(1,61) = 0.47 0.47 0.11 t: Attribute × group interaction Normal distribution Linear mixed-effects model F(1,61) = 0.01 0.94 0.05 u: Overweight − lean Normal distribution Two-sample t test t(61) = −0.39 0.69 [−0.13, 0.19] v: Overweight − lean Normal distribution Two-sample t test t(61) = −0.73 0.47 [−0.07, 0.15] w: Main effect of attribute Normal distribution Linear mixed-effects model F(1,59) = 100.9 < 0.0001 1 w: Main effect of group Normal distribution Linear mixed-effects model F(1,59) = 0.5 0.47 0.11 w: Main effect of BIS-11 Normal distribution Linear mixed-effects model F(1,59) = 0.4 0.54 0.1 w: Attribute × group interaction Normal distribution Linear mixed-effects model F(1,59) = 0.01 0.94 0.05 w: Attribute × BIS-11 interaction Normal distribution Linear mixed-effects model F(1,59) = 3.2 0.08 0.44 w: Group × BIS-11 interaction Normal distribution Linear mixed-effects model F(1,59) = 0.2 0.65 0.07 w: Attribute × group × BIS-11 interaction Normal distribution Linear mixed-effects model F(1,59) = 0.2 0.67 0.07 x: Neural β value Normal distribution Linear model t(1,59) = 2.24 0.03 [0.02, 0.43] x: Overweight − lean Normal distribution Linear model t(1,59) = −3.24 0.002 [−0.35, −0.08] y: BIS-11 Normal distribution Linear model t(1,55) = −0.21 0.83 [−0.01, 0.01] y: Neural β value Normal distribution Linear model t(1,55) = 2.21 0.03 [0.02, 0.36] y: Overweight − lean Normal distribution Linear model t(1,55) = −4.35 <0.0001 [−0.39, −0.15] y: BIS-11 × (overweight − lean) interaction Normal distribution Linear model t(1,55) = −2.45 0.02 [−0.03, 0] z: Behavioral β value Normal distribution Linear model t(1,59) = 4.25 < 0.0001 [0.2, 0.57] z: Overweight − lean Normal distribution Linear model t(1,59) = −3.9 0.0003 [−0.36, −0.11] α: BIS-11 Normal distribution Linear model t(1,55) = 0.24 0.81 [−0.01, 0.01] α: Behavioral β value Normal distribution Linear model t(1,55) = 2.29 0.03 [0.03, 0.43] α: Overweight − lean Normal distribution Linear model t(1,55) = −4.35 < 0.0001 [−0.39, −0.15] α: BIS-11 x (overweight − lean) interaction Normal distribution Linear model t(1,55) = −2.34 0.02 [−0.03, 0]