Table 1

Statistical table

 Data structureType of testPower
aNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.0101 (tp), p = 0.0002 (gt)
bNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.1821 (tp), p = 0.0018 (gt)
cNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.0245 (tp), p = 0.0013 (gt)
dNormal distributionMixed-effects analysis with Šidák multiple comparisons testp = 0.0005 (tp), p = 0.0051 (gt)
eNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.0119 (tp), p = 0.0288 (gt)
fNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.1363 (tp), p = 0.0652 (gt)
gNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.0240 (tp), p = 0.0004 (gt)
hNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.0784 (tp), p = 0.0093 (gt)
iNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp < 0.0001 (tp), p < 0.0001 (gt)
jNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.0030 (tp), p = 0.0006 (gt)
kNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.0003 (tp), p = 0.0391 (gt)
lNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.3563 (tp), p = 0.7931 (gt)
mNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.1691 (tp), p = 0.7041 (gt)
nNormal distributionOne-way ANOVA with Tukey’s multiple comparison testVarious
oNormal distributionOne-way ANOVA with Tukey’s multiple comparison testVarious
pNormal distributionOne-way ANOVA with Tukey’s multiple comparison testVarious
qNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp < 0.0001 (tp), p = 0.0001 (gt)
rNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp < 0.0001 (tp), p = 0.0001 (gt)
sNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.0154 (tp), p = 0.0193 (gt)
tNormal distributionTwo-way ANOVA with Šidák multiple comparisons testp = 0.9125 (tp), p = 0.0073 (gt)
uNormal distributionOne-way ANOVA with Tukey’s multiple comparison testp = 0.0023
vNormal distributionOne-way ANOVA with Tukey’s multiple comparison testp = 0.0309
wNormal distributionOne-way ANOVA with Tukey’s multiple comparison testp = 0.4507
xNormal distributionOne-way ANOVA with Tukey’s multiple comparison testp = 0.7689
yNormal distributionOne-way ANOVA with Tukey’s multiple comparison testp = 0.8650
zNormal distributionOne-way ANOVA with Tukey’s multiple comparison testp = 0.2349
abNormal distributionOne-way ANOVA with Tukey’s multiple comparison testp = 0.1056