Table 1

Statistical table

FigureData structureType of testSample
size
Statistical data
Fig. 1BEffect of group on number of trials
Effect of day on number of trials
Group × day interaction
Linear mixed modeln = 14t =0.49, df = 28.48, p =0.63
t =124, df = 3.58, p =4.88 × 10−4
t =124, df = −0.47, p =0.64
Fig. 1CEffect of group on first reach success rate
Effect of day on first reach success rate
Group × day interaction
Linear mixed modeln = 14t =0.442, df = 25, p =0.66
t =5.55, df = 123, p =1.70 × 10−7
t = −4.78, df = 123, p =4.98 × 10−6
Extended Data Fig. 1-1CEffect of group on number of reach attempts
Effect of day on number of reach attempts
Group × day interaction
Linear mixed modeln = 14t =0.81, df = 19, p =0.43
t = −4.12, df = 124, p =6.88 × 10−5
t =1.37, df = 124, p =0.17
Extended Data Fig. 1-1DEffect of day on performance outcomes, learners
Effect of day on performance outcomes, non-learners
Linear mixed modeln = 4No pellet: t = −0.11, df = 35, p =0.91
First success: t =4.96, df = 35, p =1.83 × 10−5
Multiple success: t = −2.53, df = 35, p =0.02
Drop in box: t =0.42, df = 35, p =0.68
Pellet knock off: t = −4.59, df = 35, p =5.46 × 10−5
Tongue: t =0, df = 35, p =1
Trigger error: t = −0.52, df = 38, p =0.61
Pellet remained: t = −0.78, df = 38, p =0.44
Non-preferred hand: t = −0.87, df = 38, p =0.39
Tongue and hand: t =0, df = 38, p =1
Hand through slot: t = −0.78, df = 38, p =0.39
No pellet: t = −0.62, df = 98, p =0.54
First success: t =0.51, df = 88, p =0.61
Multiple success: t = −0.79, df = 89, p =0.43
Drop in box: t =0.36, df = 89, p =0.72
Pellet knock off: t =0.49, df = 89, p =0.62
Tongue: t =0, df = 98, p =1
Trigger error: t = −1.37, df = 98, p =0.18
Pellet remained: t = −0.95, df = 98, p =0.35
Non-preferred hand: t = −0.87, df = 98, p =0.39
Tongue and hand: t =0, df = 98, p =1
Hand through slot: t =0.01, df = 98, p =0.99
Fig. 2CEffect of group on paw trajectory variability
Effect of day on paw trajectory variability
Group × day interaction
Linear mixed modeln = 14Reach: t =0.53, df = 23, p =0.60
Grasp: t = −0.08, df = 26, p =0.94
Reach: t = −1.85, df = 124, p =0.07
Grasp: t = −2.75, df = 124, p =6.91 × 10−3
Reach: t =0.37, df = 124, p =0.71
Grasp: t =1.08, df = 124, p =0.28
Fig. 2DNegative correlation between trajectory variability and success rate, learners
Negative correlation between trajectory variability and success rate, non-learners
Linear correlationn = 4
n = 10
Session 1: r =0.73, p =5.33 × 10−6
Session 2: r = −0.55, p =1.70 × 103
Session 3: r = −0.03, p =0.86
Session 4: r = −0.68, p =4.25 × 10−5
Session 5: r = −0.53, p =2.50 × 10−3
Session 6: r = −0.82, p =2.16 × 10−8
Session 7: r =0.15, p =0.44
Session 8: r = −0.70, p =1.51 × 10−5
Session 9: r =0.39, p =0.03
Session 10: r = −0.24, p =0.20
Session 1: r = −0.88, p =1.78 × 10−10
Session 2: r = −0.02, p =0.91
Session 3: r =0.02, p =0.91
Session 4: r = −0.67, p =4.33 × 10−5
Session 5: r = −0.33, p =0.08
Session 6: r = −0.38, p =0.04
Session 7: r =0.67, p =4.33 × 10−5
Session 8: r = −0.42, p =0.02
Session 9: r = −0.07, p =0.73
Session 10: r = −0.83, p =1.53 × 10−8
Fig. 2EEffect of group on reach duration
Effect of day on reach duration
Group × day interaction
Linear mixed modeln = 14t =0.29, df = 21, p =0.78
t = −1.03, df = 124, p =0.31
t = −0.11, df = 124, p =0.91
Fig. 2FEffect of group on reach velocity
Effect of day on reach duration
Group × day interaction
Linear mixed modeln = 14t =0.16, df = 15, p =0.87
t = −0.07, df = 124, p =0.94
t =1.02, df = 124, p =0.31
Fig. 3BEffect of group on reach endpoint
Effect of day on reach endpoint
Group × day interaction
Linear mixed modeln = 14Paw x: t =1.30, df = 18, p =0.21
Paw y: t = −0.94, df = 18, p =0.36
Paw z: t = −0.38, df = 124, p =0.71
Digit 2 ×: t =1.80, df = 17, p =0.09
Digit 2 year: t = −0.90, df = 19, p =0.38
Digit 2 z: t = −0.63, df = 19, p =0.53
Paw x: t =2.13, df = 124, p =0.04
Paw y: t = −2.45, df = 124, p =0.02
Paw z: t =1.73, df = 124, p =0.09
Digit 2 ×: t =3.12, df = 124, p =2.25 × 103
Digit 2 year: t = −1.80, df = 124, p =0.07
Digit 2 z: t =0.99, df = 124, p =0.33
Paw x: t = −2.40, df = 124, p =0.02
Paw y: t =1.45, df = 124, p =0.15
Paw z: t = −1.23, df = 124, p =0.22
Digit 2 ×: t = −3.16, df = 124, p =1.97 × 103
Digit 2 year: t =1.16, df = 124, p =0.25
Digit 2 z: t = −0.58, df = 124, p =0.57
Fig. 3DEffect of group on endpoint variability, raw data
Effect of day on endpoint variability, raw data
Group × day interaction, raw data
Effect of group on endpoint variability, subtracted position
Effect of day on endpoint variability, subtracted position
Group × day interaction, subtracted position
Linear mixed modeln = 14Hand: t = −0.95, df = 51, p =0.35
Digit 1: t = −0.71, df = 56, p =0.48
Digit 2: t = −0.86, df = 45, p =0.39
Digit 3: t = −0.42, df = 49, p =0.67
Digit 4: t = −0.29, df = 48, p =0.78
Hand: t = −2.27, df = 124, p =0.02
Digit 1: t = −1.97, df = 124, p =0.05
Digit 2: t = −2.25, df = 124, p =0.03
Digit 3: t = −1.85, df = 124, p =0.07
Digit 4: t = −1.78, df = 124, p =0.08
Hand: t =1.39, df = 124, p =0.17
Digit 1: t =1.15, df = 124, p =0.25
Digit 2: t =1.42, df = 124, p =0.16
Digit 3: t =0.90, df = 124, p =0.37
Digit 4: t =0.89, df = 124, p =0.37
Digit 1: t =0.13, df = 78, p =0.89
Digit 2: t = −1.61, df = 112, p =0.11
Digit 3: t = −0.75, df = 136, p =0.45
Digit 4: t =0.62, df = 107, p =0.54
Digit 1: t = −0.87, df = 124, p =0.39
Digit 2: t = −2.23, df = 124, p =0.03
Digit 3: t = −1.64, df = 136, p =0.10
Digit 4: t = −0.67, df = 124, p =0.51
Digit 1: t =0.64, df = 124, p =0.52
Digit 2: t =1.79, df = 124, p =0.08
Digit 3: t =1.21, df = 136, p =0.23
Digit 4: t =0.03, df = 124, p =0.98
Fig. 3EEffect of part on % mislabeled frames
Effect of day on % mislabeled frames
Part × day interaction
Linear mixed modeln = 14t = −0.05, df = 123, p =0.96
t =0.98, df = 123, p =0.33
Hand: t = −0.79, df = 117, p =0.43
Digit 1: t =1.07, df = 117, p =0.29
Digit 2: t =0.91, df = 117, p =0.37
Digit 3: t =1.82, df = 117, p =0.07
Digit 4: t =2.71, df = 117, p =7.74 × 10−3
Fig. 4AEffect of group on digit 2 trajectory variability
Effect of day on digit 2 trajectory variability
Group × day interaction
Linear mixed modeln = 14Reach: t =1.39, df = 23, p =0.18
Grasp: t = −0.60, df = 27, p =0.55
Reach: t = −1.69, df = 124, p =0.09
Grasp: t = −3.92, df = 124, p =1.46 × 10−4
Reach: t = −0.01, df = 124, p =0.99
Grasp: t =2.29, df = 124, p =0.02
Fig. 4DEffect of group on aperture
Effect of day on aperture
Group × day interaction
Linear mixed modeln = 14t = −0.81, df = 15, p =0.43
t =0.97, df = 124, p =0.34
t =0.36, df = 124, p =0.72
Fig. 4FEffect of group on aperture variance
Effect of day on aperture variance
Group × day interaction
Linear mixed modeln = 14t =0.96, df = 22, p =0.35
t = −1.53, df = 124, p =0.13
t =0.90, df = 124, p =0.37
Fig. 4HEffect of group on hand orientation
Effect of day on hand orientation
Group × day interaction
Linear mixed modeln = 14t =0.78, df = 15, p =0.45
t =2.72, df = 124, p =7.42 × 10−3
t = −1.54, df = 124, p =0.13
Fig. 4JEffect of group on orientation variance
Effect of day on orientation variance
Group × day interaction
Linear mixed modeln = 14t =0.80, df = 61, p =0.43
t =1.97, df = 124, p =0.05
t = −0.98, df = 124, p =0.33
Fig. 4LEffect of group on digit flexion
Effect of day on digit flexion
Group × day interaction
Linear mixed modeln = 14t −0.68, df = 16, p =0.51
t = −1.49, df = 124, p =0.14
t =0.98, df = 124, p =0.33
Fig. 4NEffect of group on flexion variance
Effect of day on flexion variance
Group × day interaction
Linear mixed modeln = 14t = −1.00, df = 26, p =0.33
t =1.02, df = 124, p =0.31
t = −0.01, df = 124, p =0.99
Fig. 5BEffect of group on aperture
Effect of day on aperture
Group × day interaction
Linear mixed modeln = 14t = −0.53, df = 30, p =0.60
t = −0.17, df = 111, p =0.86
t =1.35, df = 111, p =0.18
Fig. 5DEffect of group on orientation
Effect of day on orientation
Group × day interaction
Linear mixed modeln = 14t =1.11, df = 18, p =0.28
t =2.20, df = 111, p =0.03
t = −2.08, df = 111, p =0.04
Fig. 5FEffect of group on flexion
Effect of day on flexion
Group × day interaction
Linear mixed modeln = 14t = −0.184, df = 19, p =0.86
t = −0.05, df = 111, p =0.96
t = −0.52, df = 111, p =0.60
Fig. 6AEffect of outcome on reach trajectory variability
Effect of day on reach trajectory variability
Outcome × day interaction
Linear mixed modeln = 4
n = 10
n = 4
n = 10
n = 4
n = 10
Learners: t =1.26, df = 72, p =0.21
Non-learners: t =4.44, df = 183, p =1.56 × 10−5
Learners: t = −1.84, df = 72, p =0.07
Non-learners: t = −2.01, df = 183, p =0.046
Learners: t = −0.46, df = 72, p =0.64
Non-learners: t = −1.25, df = 183, p =0.21
Fig. 6BEffect of outcome on grasp trajectory
variability
Effect of day on grasp trajectory variability
Outcome × day interaction
Linear mixed modeln = 4
n = 10
n = 4
n = 10
n = 4
n = 10
Learners: t =4.77, df = 72, p =9.34 × 10−6
Non-learners: t =5.58, df = 183, p =8.47 × 10−8
Learners: t = −0.30, df = 72, p =0.77
Non-learners: t = −2.88, df = 183, p =4.42 × 103
Learners: t = −2.23, df = 72, p =0.03
Non-learners: t = −1.02, df = 183, p =0.31
Fig. 6CEffect of outcome on reach endpoint
Effect of day on reach endpoint
Outcome × day interaction
Linear mixed modeln = 4
n = 10
n = 4
n = 10
n = 4
Learners X: t = −2.31, df = 72, p =0.02
Learners Y: t = −0.95, df = 72, p =0.35
Learners Z: t =3.52, df = 72, p =7.48 × 10−4
Non-learners X: t = −1.53, df = 185, p =0.13
Non-learners Y: t = −1.49, df = 185, p =0.14
Non-learners Z: t =4.94, df = 185, p =1.76 × 10−6
Learners X: t =0.95, df = 72, p =0.34
Learners Y: t =1.54, df = 72, p =0.13
Learners Z: t =1.31, df = 72, p =0.20
Non-learners X: t = −1.46, df = 185, p =0.15
Non-learners Y: t =0.59, df = 185, p =0.56
Non-learners Z: t =0.76, df = 185, p =0.45
Learners X: t =1.94, df = 72, p =0.06
Learners Y: t =0.23, df = 72, p =0.82
Learners Z: t = −1.86, df = 72, p =0.07
Non-learners X: t = −0.03, df = 185, p =0.97
Non-learners Y: t =0.77, df = 185, p =0.44
Non-learners Z: t = −1.53, df = 185, p =0.13
Fig. 6DEffect of outcome on hand endpoint variability
Effect of day on hand endpoint variability
Outcome × day interaction
Linear mixed modeln = 4
n = 10
n = 4
n = 10
n = 4
n = 10
Learners: t =2.67, df = 72, p =9.26 × 10−3
Non-learners: t =2.63, df = 185, p =9.34 × 10−3
Learners: t = −0.06, df = 72, p =0.96
Non-learners: t = −0.26, df = 185, p =0.80
Learners: t = −1.95, df = 72, p =0.05
Non-learners: t = −0.67, df = 185, p =0.50
Fig. 6EEffect of outcome on digit 2 endpoint variability
Effect of day on digit 2 endpoint variability
Outcome × day interaction
Linear mixed modeln = 4
n = 10
n = 4
n = 10
n = 4
n = 10
Learners: t =2.64, df = 72, p =0.01
Non-learners: t =2.60, df = 185, p =0.01
Learners: t = −0.14, df = 72, p =0.89
Non-learners: t = −0.22, df = 185, p =0.83
Learners: t = −1.92, df = 72, p =0.06
Non-learners: t = −0.25, df = 185, p =0.80