Table 3.

Statistics for the data shown in Figures 1-Figures 3

FigureStatistical testStatistics outputN
Fig. 1A,B WIN: 10 neurons, 4 mice, DMSO: 21 neurons, 7 mice
mGPSC frequency: DMSO × WINANOVAF(1,28) = 14.704, p = 0.001 
mGPSC amplitude: DMSO × WINANOVAF(1,29) = 0.598, p = 0.445 
Fig. 1D AM251: 5 neurons, 3 mice
mGPSC frequency: DMSO × AM251ANOVAF(1,30) = 1.153, p = 0.292 
mGPSC amplitude: DMSO × AM251ANOVAF(1,30) = 2.975, p = 0.095 
mGPSC frequency: AM251 × AM251 + WINRepeated measures ANOVAF(2,8) = 1.719, p = 0.239 
Fig. 1F FC: 8 neurons, 3 mice
mGPSC frequency: DMSO × FCANOVAF(1,28) = 3.52, p = 0.071 
Fig. 3A,B,E,F WIN: 4 mice, 6 slices, 38 soma (s), 194 non-soma (ns)
Increase magnitude: treatment (WIN/DMSO) × ROI (s/ns)Kruskal–WallisH(3) = 169.052, p < 0.001DMSO: 3 mice, 4 slices, 70 s, 86 ns
Increase magnitude DMSO: s × nsMedian post hocp = 1 
Increase magnitude WIN: s × nsMedian post hocp = 1 
Increase magnitude (both s and ns): DMSO × WINMedian post hocp < 0.001 
Decrease magnitude: treatment (WIN/DMSO) × ROI (s/ns)Kruskal–WallisH(3) = 60.729, p < 0.001 
Decrease magnitude DMSO: s × nsMedian post hocp = 1 
Decrease magnitude WIN: s × nsMedian post hocp = 1 
Increase magnitude (both s and ns): DMSO × WINMedian post hocp < 0.01 
Fig. 3C,G TTX + CNQX + WIN: 4 mice, 5 slices, 19 s, 93 ns
Increase magnitude: treatment (WIIN/ TTX + CNQX + WIN) × ROI (s/ns)Kruskal–WallisH(3) = 13.35, p = 0.004 
Increase magnitude ns: WIN × TTX + CNQX + WINMedian post hocp = 0.017 
Decrease magnitude: treatment (WIIN/ TTX + CNQX + WIN) × ROI (s/ns)Kruskal–WallisH(3) = 2.213, p = 0.529