Figure | Comparison | Type of test | Statistic | 95% CI | |
---|---|---|---|---|---|

a | NA | Sucrose pellets | Four-way LMM ANOVA | Sex × intake × treatment × sessions: F_{(8,364)} = 0.85 | p = 0.56 |

b | NA | Alcohol (g/kg), weeks 1–3 | Three-way LMM ANOVA | Sex: F_{(1,59)} = 48.42 | p < 0.0001 |

c | NA | Alcohol (%pref), weeks 1–3 | Three-way LMM ANOVA | Sex: F_{(1,58)} = 17.61 | p < 0.0001 |

d | 1b,c | Week 3 average alcohol intake and preference | Unpaired t tests | Intake: t_{(60)} = 4.66Preference: t_{(60)} = 2.74 | p < 0.0001p = 0.008 |

1b | Average alcohol (g/kg) | Frequency distribution, median split | Cutoff males: 4.3 g/kg females: 6.9 g/kg | NA | |

1c | Average alcohol (%) | Frequency distribution, median split | Cutoff males: 16%, females: 23% | NA | |

e | NA | Body weight, weeks 1–3 | Three-way LMM ANOVA | Sex: F_{(1,93)} = 736.83 | p < 2e^{−16} |

NA | Body weight, weeks 1–10 | Four-way LMM ANOVA | Sex × intake × treatment × sessions: F_{(60,2790)} = 1.57 | p = 0.004 | |

NA | Males: body weight, weeks 1–10 | Three-way LMM ANOVA | Intake × treatment × sessions: F_{(60,1410)} = 1.75 | p = 0.0004 | |

NA | Water intake: Ket SA vs Sal SA | Tukey’s post hoc | Sessions 17–31: t < −2 | Sessions 17-31: p < 0.05 | |

g | 2a,b | FR1 infusions, sessions 1–6 | Four-way LMM ANOVA | Sex: F_{(1,93)} = 9.02 | p = 0.0034 |

2a,b | FR1 Infusions, sessions 10–11 | Four-way LMM ANOVA | Sex × intake: F_{(2,93)} = 3.45 | p = 0.036 | |

2a,b | High-Alc: F vs M | Tukey’s post hoc | SA sessions 10–11: t_{(93)} = 3.05 | p = 0.003 | |

2a,b | Males: FR1 Infusions, sessions 1–6 | Three-way LMM ANOVA | Intake × treatment × sessions: F_{(10,230)} = 2.3 | p = 0.014 | |

2a | Males_Ket SA: high vs low and high vs water | Tukey’s post hoc | SA session 4: t_{(46)} = −2.8SA session 5: t_{(46)} = −3.13 | Session 4: p = 0.02Session 5: p =0.008 | |

Males: FR1 infusions, sessions 10–11 | Three-way LMM ANOVA | Intake × treatment: F_{(2,46)} = 3.83 | p = 0.029 | ||

Ket SA: high-Alc vs water | Tukey’s post hoc | t_{(46)} = −2.5 | p = 0.04 | ||

Ket SA: high-Alc vs low_Alc | Tukey’s post hoc | t_{(46)} = −3.005 | p = 0.012 | ||

2a,b | Females: FR1 Infusions, sessions 1–6 | Three-way LMM ANOVA | Treatment × sessions: F_{(5,235)} = 38.03 | p < 0.0001 | |

Females: FR1 Infusions, sessions 10–11 | Three-way LMM ANOVA | Treatment × sessions: F_{(1,47)} = 6.11 | p = 0.017 | ||

h | 2c,d | Active responses, sessions 1–6 | Four-way LMM ANOVA | Sex × intake × treatment × sessions: F_{(10,459)} = 2.13 | p = 0.021 |

2c | Ket SA_water: F vs M | Tukey’s post hoc | SA session 2: t_{(93)} = 2.33 | p = 0.022 | |

2c | Ket SA_low-Alc: F vs M | Tukey’s post hoc | SA sessions 5–6: t_{(93)} = 2.18, 2.62 | p = 0.032, 0.01 | |

2c | Ket SA_high-Alc: F vs M | Tukey’s post hoc | SA sessions 3–6: t_{(93)} = 3.51, 3.53, 4.54, 4.59 | p = 0.0007, 0.0007, 0.0001, 0.0001 | |

2c,d | Active responses, sessions 10–11 | Four-way LMM ANOVA | Sex: F_{(1,93)} = 9.93 | p = 0.002 | |

2c,d | Inactive responses, sessions 1–6 | Four-way LMM ANOVA | Sex: F_{(1,94)} = 4.1 | p = 0.04 | |

Inactive responses, sessions 10–11 | Four-way LMM ANOVA | Sex × intake × treatment × sessions: F_{(2,90)} = 0.35 | p = 0.71 | ||

2c,d | Males: active responses, sessions 1–6 | Three-way LMM ANOVA | Intake × treatment × sessions: F_{(10,228)} = 3.13 | p = 0.0009 | |

2c | Males_Ket SA: high vs water | Tukey’s post hoc | SA sessions 5–6: t_{(46)} = −3.59, −2.95 | p = 0.002, 0.01 | |

2c,d | Males: active response, sessions 10–11 | Three-way LMM ANOVA | Intake × treatment: F_{(2,46)} = 3.65 | p = 0.034 | |

2c | Males_Ket SA: high vs water | Tukey’s post hoc | Main effect of intake: t_{(46)} = −3.17 | p = 008 | |

2c,d | Females: active response, sessions 1–6 | Three-way LMM ANOVA | Treatment × sessions: F_{(5,231)} = 26.44 | p < 0.0001 | |

2c,d | Females: active response, sessions 10–11 | Three-way LMM ANOVA | Intake × treatment × sessions: F_{(2,46)} = 4.12 | p = 0.02 | |

2c | Ket SA: high-Alc vs water | Tukey’s post hoc | SA session 10: t_{(46)} = 2.77 | p = 022 | |

i | 3a,b | PR break point | Four-way LMM ANOVA | Sex × intake × treatment × sessions: F_{(4,186)} = 3.6 | p = 0.0074 |

3a | Ket SA_water: F vs M | Tukey’s post hoc | SA session 7: t_{(93)} = 2.21 | p = 0.029 | |

3a | Ket SA_low-Alc: F vs M | Tukey’s post hoc | SA session 9: t_{(93)} = 3.29 | p = 0.0014 | |

3a | Ket SA_high-Alc: F vs M | Tukey’s post hoc | SA sessions 8–9: t_{(93)} = 5.27, 3.32 | p = 0.0001, 0.0013 | |

3a,b | Males: break point | Three-way LMM ANOVA | Treatment × sessions: F_{(2,92)} = 3.21 | p = 0.045 | |

3a,b | M_Ket vs Sal | Tukey’s post hoc | SA sessions 7–8: t_{(46)} = 4.08, 2.94 | p = 0.0002, 0.0052 | |

3a,b | Females: break point | Three-way LMM ANOVA | Intake × treatment × sessions: F_{(4,94)} = 3.67 | p = 0.008 | |

3a,b | F_Water: Ket vs Sal SA | Tukey’s post hoc | SA session 7: t_{(47)} = 2.25 | p = 0.029 | |

3a,b | F_Low-Alc: Ket vs Sal SA | Tukey’s post hoc | SA session 9: t_{(47)} = 2.52 | p = 0.015 | |

3a,b | F_High-Alc: Ket vs Sal SA | Tukey’s post hoc | SA session 8: t_{(47)} = 3.67 | p = 0.0006 | |

3a | F_Ket SA: high vs water and high vs low | Tukey’s post hoc | SA session 8: t_{(47)} = 3.94, 3.78 | p = 0.0008, 0.012 | |

j |
3c,d | PR active responses | Four-way LMM ANOVA | Sex × intake × treatment × sessions: F_{(4,185)} = 3.25 | p = 0.013 |

3c | Ket SA_water: F vs M | Tukey’s post hoc | SA session 7: t_{(93)} = 1.99 | p = 0.049 | |

3c | Ket SA_low-Alc: F vs M | Tukey’s post hoc | SA session 9: t_{(93)} = 3.27 | p = 0.0015 | |

3c | Ket SA_high-Alc: F vs M | Tukey’s post hoc | SA sessions 8–9: t_{(93)} = 5.2, 3.43 | p = 0.0001, 0.0009 | |

3c,d | Males: PR active responses | Three-way LMM ANOVA | main effect of treatment: F_{(1,46)} = 10.43 | p = 0.0023 | |

3c,d | Females: active responses | Three-way LMM ANOVA | Intake × treatment × sessions: F_{(4,94)} = 3.25 | p = 0.015 | |

3c,d | F_low-Alc: Ket vs Sal SA | Tukey’s post hoc | SA session 9: t_{(47)} = 2.48 | p = 0.017 | |

3c,d | F_high-Alc: Ket vs Sal SA | Tukey’s post hoc | SA session 8: t_{(47)} = 3.65, 2.05 | p = 0.0007, 0.0047 | |

3c | F_Ket SA: high vs water and high vs low | Tukey’s post hoc | SA session 8: t_{(47)} = 3.88, 3.76 | p = 0.0009, 0.0014 | |

k |
3e,f | PR infusions | Four-way LMM ANOVA | Sex × intake × treatment × sessions: F_{(4,186)} = 2.95 | p = 0.022 |

3e | Ket SA_water: F vs M | Tukey’s post hoc | SA session 7: t_{(93)} = 2.26 | p = 0.026 | |

3e | Ket SA_low-Alc: F vs M | Tukey’s post hoc | SA session 9: t_{(93)} = 2.69 | p = 0.0084 | |

3e | Ket SA_high-Alc: F vs M | Tukey’s post hoc | SA sessions 8–9: t_{(93)} = 4.04, 3.54 | p = 0.0001, 0.0006 | |

3e,f | Males: infusions | Three-way LMM ANOVA | Treatment × sessions: F_{(2,92)} = 4.32 | p = 0.016 | |

3e,f | M_Ket vs Sal | Tukey’s post hoc | SA sessions 7–9: t_{(46)} = 5.48, 4.17, 2.09 | p = 0.0001, 0.0001, 0.04 | |

3e,f | Females: infusions | Three-way LMM ANOVA | Intake × treatment × sessions: F_{(4,94)} = 4.48 | p = 0.002 | |

3e,f | F_water: Ket vs Sal SA | Tukey’s post hoc | SA sessions 7, 9: t_{(47)} = 3.82, 2.03 | p = 0.0004, 0.049 | |

3e,f | F_low-Alc: Ket vs Sal SA | Tukey’s post hoc | SA session 9: t_{(47)} = 2.71 | p = 0.005 | |

3e,f | F_high-Alc: Ket vs Sal SA | Tukey’s post hoc | SA session 8: t_{(47)} = 2.96 | p = 0.009 | |

3e | F_Ket SA: high vs water and high vs low | Tukey’s post hoc | SA session 8: t_{(47)} = 2.9, 3.19 | p = 0.02, 0.007 | |

l |
4a,b | Incubation of craving, active responses | Four-way LMM ANOVA | Sex: F_{(1,85)} = 9.81 | p = 0.0024 |

4a,b | Males: incubation of craving, active responses | Three-way LMM ANOVA | Treatment × sessions: F_{(1,85)} = 3.79 | p = 0.026 | |

4a,b | Males: incubation of craving, active responses | Three-way LMM ANOVA | Intake × treatment: F_{(2,44)} = 5.44 | p = 0.008 | |

4a | M_water, Ket SA: day 1 vs 21 | Tukey’s post hoc | t_{(91)} = 2.52 | p = 0.03 | |

4a | M_low-Alc, Ket SA: day 1 vs 7, 1 vs 21 | Tukey’s post hoc | t_{(91)} = 3.44, 4.05 | p = 0.0025, 0.0003 | |

4a | M_high-Alc, Ket SA, day 1 vs 7 | Tukey’s post hoc | t_{(91)} = 2.72 | p = 0.02 | |

4a,b | Females: incubation of craving, active responses | Three-way LMM ANOVA | Intake × treatment: F_{(2,41)} = 3.93 | p = 0.027 | |

4b | F_water, Sal SA: day 1 vs 7, 1 vs 21 | Tukey’s post hoc | t_{(82)} = 2.8, 2.8 | p = 0.01, 0.01 | |

4a | F_water, Ket SA: day 1 vs 21 | Tukey’s post hoc | t_{(82)} = 2.8 | p = 0.01 | |

4a | F_high-Alc, Ket SA, day 1 vs 7 | Tukey’s post hoc | t_{(82)} = 2.52 | p = 0.04 | |

m |
5a,b | Alcohol (g/kg), weeks 1–10 | Four-way LMM ANOVA | Sex: F_{(1,53)} = 83.87 | p < 0.0001 |

5a,b | Males: g/kg weeks 1–10 | Three-way LMM ANOVA | Intake × treatment × sessions: F_{(30,785)} = 2.53 | p < 0.0001 | |

5a | High-Alc: Ket SA vs Sal SA | Tukey’s post hoc | Sessions 19, 22: t_{(27)} < −2.68, −3.08 | p = 0.019, 0.009 | |

5a,b | Females: g/kg weeks 1–10 | Three-way LMM ANOVA | Intake × sessions: F_{(30,760)} = 2.5; treatment × sessions: F_{(30,760)} = 1.6 | p < 0.0001; p = 0.022 | |

5b | Low-Alc: Ket SA vs Sal SA | Tukey’s post hoc | Sessions 19–20, 23–26: t_{(27)} > 2.26 | p < 0.05 | |

n |
6a,b | Alcohol (%pref), weeks 1–10 | Four-way LMM ANOVA | Sex: F_{(1,53)} = 6.19 | p = 0.016 |

6a,b | Males: %pref weeks 1–10 | Three-way LMM ANOVA | Intake × treatment × sessions: F_{(30,784)} = 2.28 | p = 0.0001 | |

6a | High-Alc: Ket SA vs Sal SA | Tukey’s post hoc | Sessions 19–23, 25–31: t_{(27)} < −2.07 | p < 0.05 | |

6a,b | Females: %pref weeks 1–10 | Three-way LMM ANOVA | Intake × treatment × sessions: F_{(30,759)} = 1.67 | p = 0.015 | |

6b | Low-Alc: Ket SA vs Sal SA | Tukey’s post hoc | Sessions 19–20, 22–26: t_{(26)} > 2.11 | p < 0.05 | |

o |
7c | Total spines | Three-way LMM ANOVA | Sex × intake: F_{(2,26)} = 4.77 | p = 0.017 |

7c | High-Alc: M vs F | Tukey’s post hoc | t_{(26)} = −4.17 | p = 0.0003 | |

7c | Males: total spines | Two-way LMM ANOVA | Intake: F_{(2,13)} = 3.84 | p = 0.04 | |

High-Alc vs water | Tukey’s post hoc | t_{(15)} = 2.87 | p = 0.02 | ||

7c | Females: total spines | Two-way LMM ANOVA | Intake: F_{(2,13)} = 16.23 | p = 0.00029 | |

p |
7d | Thin spines | Three-way LMM ANOVA | Sex: F_{(1,26)} = 9.63 | p = 0.005 |

7d | Males: thin spines | Two-way LMM ANOVA | Treatment: F_{(2,13)} = 30.63 | p < 0.0001 | |

7d | Females: thin spines | Two-way LMM ANOVA | Intake × treatment: F_{(2,13)} = 3.92 | p = 0.047 | |

7d | Sal SA: high-Alc vs water | Tukey’s post hoc | t_{(13)} = 3.67 | p = 0.008 | |

7d | Ket SA: low-Alc vs water | Tukey’s post hoc | t_{(15)} = 5.25 | p = 0.0004 | |

7d | Ket SA: high-Alc vs water | Tukey’s post hoc | t_{(15)} = 4.72 | p = 0.001 | |

7d | Water: Ket SA vs Sal SA | Tukey’s post hoc | t_{(15)} = −3.47 | p = 0.004 | |

q |
7e | Mushroom spines | Three-way LMM ANOVA | Sex × intake × treatment: F_{(2,26)} = 8.82 | p = 0.001 |

7e | Males vs females: high-Alc, Ket SA | Tukey’s post hoc | t_{(26)} = −6.22 | p < 0.0001 | |

7e | Males vs Females: low-Alc, Ket SA | Tukey’s post hoc | t_{(26)} = 2.6 | p = 0.01 | |

7e | Males: mushroom spines | Two-way LMM ANOVA | Intake × treatment: F_{(2,13)} = 12.08 | p = 0.001 | |

7e | Water: Ket SA vs Sal SA | Tukey’s post hoc | t_{(13)} = 5.21 | p = 0.0005 | |

7e | Low-Alc: Ket SA vs Sal SA | Tukey’s post hoc | t_{(13)} = 7.16 | p < 0.0001 | |

7e | High-Alc: Ket SA vs Sal SA | Tukey’s post hoc | t_{(13)} = 0.21 | p = 0.83 | |

7e | Females: mushroom spines | Two-way LMM ANOVA | Treatment: F_{(1,13)} = 72.6 | p < 0.0001 | |

r |
7f | Stubby spines | Three-way LMM ANOVA | Sex × intake × treatment: F_{(2,26)} = 0.02 | p = 0.97 |

s |
8a | Total × alcohol (%pref) | Linear regression | Males: R
^{2} = 0.54Females: R
^{2} = 0.49 | p = 0.007p = 0.01 |

8b | Thin × alcohol (%pref) | Linear regression | Males: R
^{2} = 0.35Females: R
^{2} = 0.35 | p = 0.04p = 0.04 | |

8c | Mushroom × alcohol (%pref) | Linear regression | Males: R
^{2} = 0.06Females: R
^{2} = 0.1 | p = 0.44p = 0.31 | |

t |
8d | Total × Cum. infusions | Linear regression | Males: R
^{2} = 0.17Females: R
^{2} = 0.09 | p = 0.08p = 0.21 |

8e | Thin × Cum. infusions | Linear regression | Males: R
^{2} = 0.3Females: R
^{2} = 0.007 | p = 0.01p = 0.73 | |

8f | Mushroom × Cum. infusions | Linear regression | Males: R
^{2} = 0.18Females: R
^{2} = 0.56 | p = 0.07p = 0.003 |

Summary of analyses performed on behavioral, morphologic, and correlational data. Each comparison is indicated by lettering in the far-left column (column 1). Figure column represents each corresponding to that figure or panel for that comparison. Comparison column represents the dependent variable being measured as well as individual comparisons examined with

*post hoc*tests. Type of test indicates the analysis performed on that particular dataset. Statistic column indicates sample size, df, and*F*statistic for each comparison. Statistical interactions and/or main effects observed are indicated within this column. Confidence interval (CI) set at 95% lists the corresponding*p*values for each statistic, and any comparison*p*< 0.05 was considered statistically significant. NA, Not applicable; Cum., cumulative; LMM ANOVA, linear mixed-models ANOVA. %pref, percentage of preference; F, female; M, male.