TY - JOUR T1 - Statistical Rigor and the Perils of Chance JF - eneuro JO - eneuro DO - 10.1523/ENEURO.0030-16.2016 VL - 3 IS - 4 SP - ENEURO.0030-16.2016 AU - Katherine S. Button Y1 - 2016/07/01 UR - http://www.eneuro.org/content/3/4/ENEURO.0030-16.2016.abstract N2 - Concerns about the reliability and reproducibility of biomedical research have been voiced across several arenas. In this commentary, I discuss how a poor appreciation of the role of chance in statistical inference contributes to this problem. In particular, how poor scientific design, such as low statistical power, and questionable research practices, such as post hoc hypothesizing and undisclosed flexibility in analyses, yield a high proportion of false-positive results. I discuss how the current publication and funding system perpetuates this poor practice by rewarding positive, yet often unreliable, results over rigorous methods. I conclude by discussing how scientists can prevent being fooled by chance findings by adopting well established, but often ignored, methodological best-practice.There is increasing awareness of the problem of unreliable findings across biomedical sciences (Ioannidis, 2005). Many “landmark” findings could not be replicated (Scott et al., 2008; Begley and Ellis, 2012; Steward et al., 2012) and many promising preclinical findings have failed to translate into clinical application (Perel et al., 2007; Prinz et al., 2011), leading many to question whether science is broken (Economist,2013). Central to this problem is a poor appreciation of the role of chance in the scientific process. As neuroscience has developed over the past 50 years, many of the large, easily observable effects have been found, and the field is likely pursuing smaller and more subtle effects. The corresponding growth in computational capabilities (Moore, 1998) means that researchers can run numerous tests on a single dataset in a matter of minutes. The human brain processes randomness poorly, and the huge potential for undisclosed analytical flexibility in modern data-management packages leaves researchers increasingly vulnerable to being fooled by chance.Researchers cannot measure an entire population of interest, so they take samples and use statistical inference to determine the probability that the results … ER -