TY - JOUR T1 - Fast Synaptically Activated Calcium and Sodium Kinetics in Hippocampal Pyramidal Neuron Dendritic Spines JF - eneuro JO - eNeuro DO - 10.1523/ENEURO.0396-22.2022 VL - 9 IS - 6 SP - ENEURO.0396-22.2022 AU - Kenichi Miyazaki AU - William N. Ross Y1 - 2022/11/01 UR - http://www.eneuro.org/content/9/6/ENEURO.0396-22.2022.abstract N2 - An accurate assessment of the time course, components, and magnitude of postsynaptic currents is important for a quantitative understanding of synaptic integration and signaling in dendritic spines. These parameters have been studied in some detail in previous experiments, primarily using two-photon imaging of [Ca2+]i changes and two-photon uncaging of glutamate. However, even with these revolutionary techniques, there are some missing pieces in our current understanding, particularly related to the time courses of synaptically evoked [Ca2+]i and [Na+]i changes. In new experiments, we used low-affinity, linear Na+ and Ca2+ indicators, laser fluorescence stimulation, and a sensitive camera-based detection system, combined with electrical stimulation and two-photon glutamate uncaging, to extend measurements of these spine parameters. We found that (1) almost all synaptically activated Na+ currents in CA1 hippocampal pyramidal neuron spines in slices from mice of either sex are through AMPA receptors with little Na+ entry through voltage-gated sodium channels (VGSCs) or NMDA receptor channels; (2) a spectrum of sodium transient decay times was observed, suggesting a spectrum of spine neck resistances, even on the same dendrite; (3) synaptically activated [Ca2+]i changes are very fast and are almost entirely because of Ca2+ entry through NMDA receptors at the time when the Mg2+ block is relieved by the fast AMPA-mediated EPSP; (4) the [Ca2+]i changes evoked by uncaging glutamate are slower than the changes evoked by synaptic release, suggesting that the relative contribution of Ca2+ entering through NMDA receptors at rest following uncaging is higher than following electrical stimulation. ER -