TY - JOUR T1 - Afterhyperpolarization Promotes the Firing of Mitral Cells through a Voltage-Dependent Modification of Action Potential Threshold JF - eneuro JO - eNeuro DO - 10.1523/ENEURO.0401-21.2021 VL - 9 IS - 2 SP - ENEURO.0401-21.2021 AU - Nicolas Fourcaud-Trocmé AU - Mickaël Zbili AU - Patricia Duchamp-Viret AU - Nicola Kuczewski Y1 - 2022/03/01 UR - http://www.eneuro.org/content/9/2/ENEURO.0401-21.2021.abstract N2 - In the olfactory bulb, mitral cells (MCs) display a spontaneous firing that is characterized by bursts of action potentials (APs) intermixed with silent periods. Intraburst firing frequency and duration are heterogeneous among MCs and increase with membrane depolarization. By using patch-clamp recording on rat slices, we dissected out the intrinsic properties responsible for this bursting activity. We showed that the threshold of AP generation dynamically changes as a function of the preceding trajectory of the membrane potential. In fact, the AP threshold became more negative when the membrane was hyperpolarized and had a recovery rate inversely proportional to the membrane repolarization rate. Such variations appeared to be produced by changes in the inactivation state of voltage-dependent Na+ channels. Thus, AP initiation was favored by hyperpolarizing events, such as negative membrane oscillations or inhibitory synaptic input. After the first AP, the following fast afterhyperpolarization (AHP) brought the threshold to more negative values and then promoted the emission of the following AP. This phenomenon was repeated for each AP of the burst making the fast AHP a regenerative mechanism that sustained the firing, AHP with larger amplitudes and faster repolarizations being associated with larger and higher-frequency bursts. Burst termination was found to be because of the development of a slow repolarization component of the AHP (slow AHP). Overall, the AHP characteristics appeared as a major determinant of the bursting properties. ER -