RT Journal Article SR Electronic T1 Coordination through Inhibition: Control of Stabilizing and Updating Circuits in Spatial Orientation Working Memory JF eneuro JO eNeuro FD Society for Neuroscience SP ENEURO.0537-20.2021 DO 10.1523/ENEURO.0537-20.2021 VO 8 IS 5 A1 Rui Han A1 Hsuan-Pei Huang A1 Chia-Lung Chuang A1 Hung-Hsiu Yen A1 Wei-Tse Kao A1 Hui-Yun Chang A1 Chung-Chuan Lo YR 2021 UL http://www.eneuro.org/content/8/5/ENEURO.0537-20.2021.abstract AB Spatial orientation memory plays a crucial role in animal navigation. Recent studies of tethered Drosophila melanogaster (fruit fly) in a virtual reality setting showed that the head direction is encoded in the form of an activity bump, i.e., localized neural activity, in the torus-shaped ellipsoid body (EB). However, how this system is involved in orientation working memory is not well understood. We investigated this question using free moving flies (D. melanogaster) in a spatial orientation memory task by manipulating two EB subsystems, C and P circuits, which are hypothesized for stabilizing and updating the activity bump, respectively. To this end, we suppressed or activated two types of inhibitory ring neurons (EIP and P) which innervate EB, and we discovered that manipulating the two inhibitory neuron types produced distinct behavioral deficits, suggesting specific roles of the inhibitory neurons in coordinating the stabilization and updating functions of the EB circuits. We further elucidate the neural mechanisms underlying such control circuits using a connectome-constrained spiking neural network model.