RT Journal Article SR Electronic T1 Arginine Vasopressin-Containing Neurons of the Suprachiasmatic Nucleus Project to CSF JF eneuro JO eNeuro FD Society for Neuroscience SP ENEURO.0363-20.2021 DO 10.1523/ENEURO.0363-20.2021 VO 8 IS 2 A1 Taub, Alana A1 Carbajal, Yvette A1 Rimu, Kania A1 Holt, Rebecca A1 Yao, Yifan A1 Hernandez, Amanda L. A1 LeSauter, Joseph A1 Silver, Rae YR 2021 UL http://www.eneuro.org/content/8/2/ENEURO.0363-20.2021.abstract AB While it is well established that there are robust circadian rhythms of arginine vasopressin (AVP) in the cerebrospinal fluid (CSF), the route whereby the peptide reaches the CSF is not clear. A, AVP neurons constitute the largest fraction of the SCN neuronal population. Here, we show that processes of AVP-expressing SCN neurons cross the epithelium of the 3rd ventricular wall to reach the CSF (black arrows). Additionally, we report rostro-caudal differences in AVP neuron size and demonstrate that the localization of cells expressing the clock protein PER2 extend beyond the AVP population, thereby indicating that the size of this nucleus is somewhat larger than previously understood. B, Following lateral ventricle (LV) injection of cholera toxin β subunit (CTβ ; magenta) the retrograde tracer is seen in AVP neurons of the SCN, supporting the anatomical evidence that AVP neuronal processes directly contact the CSF.Arginine vasopressin (AVP) expressing neurons form the major population in the brain’s circadian clock located in the hypothalamic suprachiasmatic nucleus (SCN). They participate in inter-neuronal coupling and provide an output signal for synchronizing daily rhythms. AVP is present at high concentrations in the cerebrospinal fluid (CSF) and fluctuates on a circadian timescale. While it is assumed that rhythms in CSF AVP are of SCN origin, a route of communication between these compartments has not been delineated. Using immunochemistry (ICC) and cell filling techniques, we determine the morphology and location of AVP neurons in mouse and delineate their axonal and dendritic processes. Cholera toxin β subunit (CTβ) tracer injected into the lateral ventricle tests whether AVP neurons communicate with CSF. Most importantly, the results indicate that AVP neurons lie in close proximity to the third ventricle, and their processes cross the ventricular wall into the CSF. We also report that contrary to widely held assumptions, AVP neurons do not fully delineate the SCN borders as PER2 expression extends beyond the AVP region. Also, AVP neurons form a rostral prong originating in the SCN medial-most and ventral-most aspect. AVP is lacking in the mid-dorsal shell but does occur at the base of the SCN just above the optic tract. Finally, neurons of the rostral SCN are smaller than those lying caudally. These findings extend our understanding of AVP signaling potential, demonstrate the heterogeneity of AVP neurons, and highlight limits in using this peptide to delineate the mouse SCN.