TY - JOUR T1 - Unanticipated stressful and rewarding experiences engage the same prefrontal cortex and ventral tegmental area neuronal populations JF - eneuro JO - eNeuro DO - 10.1523/ENEURO.0029-20.2020 SP - ENEURO.0029-20.2020 AU - Alberto Del Arco AU - Junchol Park AU - Bita Moghaddam Y1 - 2020/05/08 UR - http://www.eneuro.org/content/early/2020/05/08/ENEURO.0029-20.2020.abstract N2 - Brain networks that mediate motivated behavior in the context of aversive and rewarding experiences involve the prefrontal cortex (PFC) and ventral tegmental area (VTA). Neurons in both regions are activated by stress and reward, and by learned cues that predict aversive or appetitive outcomes. Recent studies have proposed that separate neuronal populations and circuits in these regions encode learned aversive versus appetitive contexts. But how about the actual experience? Do the same or different PFC and VTA neurons encode unanticipated aversive and appetitive experiences? To address this, we recorded unit activity and local field potentials (LFP) in the dorsomedial PFC (dmPFC) and VTA of male rats as they were exposed, in the same recording session, to reward (sucrose) or stress (tail pinch) spaced one hour apart. As expected, experience-specific neuronal responses were observed. About 15-25% of single units in each region responded by excitation or inhibition to either stress or reward, and only stress increased LFP theta oscillation power in both regions and coherence between regions. But the largest number of responses (29% dmPFC and 30% VTA units) involved dual-valence neurons that responded to both stress and reward exposure. Moreover, the temporal profile of neuronal population activity in dmPFC and VTA as assessed by principal component analysis were similar during both types of experiences. These results reveal that aversive and rewarding experiences engage overlapping neuronal populations in the dmPFC and the VTA. These populations may provide a locus of vulnerability for stress related disorders, which are often associated with anhedonia.Significant Statement Animals must recognize unexpected harmful and rewarding events in order to survive. How the brain represents these competing experiences is not fully understood. Two interconnected brain regions implicated in encoding both rewarding and stressful events are the dmPFC and the VTA. In either region, separate neurons and associated circuitry are assumed to respond to events with positive or negative valence. We find, however, that a significant subpopulation of neurons in dmPFC and VTA encode both rewarding and aversive experiences. These dual-valence neurons may provide a computational advantage for flexible planning of behavior when organisms face unexpected rewarding and harmful experiences. ER -