RT Journal Article SR Electronic T1 SIGNAL PROPAGATION VIA OPEN-LOOP INTRATHALAMIC ARCHITECTURES: A COMPUTATIONAL MODEL JF eneuro JO eNeuro FD Society for Neuroscience SP ENEURO.0441-19.2020 DO 10.1523/ENEURO.0441-19.2020 A1 Jeffrey W. Brown A1 Aynaz Taheri A1 Robert V. Kenyon A1 Tanya Berger-Wolf A1 Daniel A. Llano YR 2020 UL http://www.eneuro.org/content/early/2020/01/31/ENEURO.0441-19.2020.abstract AB Propagation of signals across the cerebral cortex is a core component of many cognitive processes and is generally thought to be mediated by direct intracortical connectivity. The thalamus, by contrast, is considered to be devoid of internal connections and organized as a collection of parallel inputs to the cortex. Here, we provide evidence that “open-loop” intrathalamic pathways involving the thalamic reticular nucleus (TRN) can support propagation of oscillatory activity across the cortex. Recent studies support the existence of open-loop thalamo-reticulo-thalamic (TC-TRN-TC) synaptic motifs in addition to traditional closed-loop architectures. We hypothesized that open-loop structural modules, when connected in series, might underlie thalamic and, therefore cortical, signal propagation. Using a supercomputing platform to simulate thousands of permutations of a thalamocortical network based on physiological data collected in mice, rats, ferrets, and cats and in which select synapses were allowed to vary both by class and individually, we evaluated the relative capacities of closed- and open-loop TC-TRN-TC synaptic configurations to support both propagation and oscillation. We observed that 1) signal propagation was best supported in networks possessing strong open-loop TC-TRN-TC connectivity; 2) intrareticular synapses were neither primary substrates of propagation nor oscillation; and 3) heterogeneous synaptic networks supported more robust propagation of oscillation than their homogeneous counterparts. These findings suggest that open-loop, heterogeneous intrathalamic architectures might complement direct intracortical connectivity to facilitate cortical signal propagation.Significance Statement: Interactions between the dorsal thalamus and thalamic reticular nucleus (TRN) are speculated to contribute to phenomena such as arousal, attention, sleep, and seizures. Despite the importance of the TRN, the synaptic microarchitectures forming the basis for dorsal thalamus-TRN interactions are not fully understood. The computational neural model we present incorporates “open-loop” thalamo-reticular-thalamic (TC-TRN-TC) synaptic motifs, which have been experimentally observed. We elucidate how open-loop motifs possess the capacity to shape the propagative properties of signals intrinsic to the thalamus and evaluate the wave dynamics they support relative to closed-loop TC-TRN-TC pathways and intrareticular synaptic connections. Our model also generates predictions regarding how different spatial distributions of reticulothalamic and intrareticular synapses affect these signaling properties.