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ABSTRACT 4 

Shifts in spatial attention are associated with variations in alpha-band (⍺, 8–14 Hz) 5 

activity, specifically in inter-hemispheric imbalance. The underlying mechanism is 6 

attributed to local ⍺-synchronisation, which regulates local inhibition of neural 7 

excitability, and fronto-parietal synchronisation reflecting long-range communication. 8 

The direction-specific nature of this neural correlate brings forward its potential as a 9 

control signal in brain-computer interfaces (BCI). In the present study, we explored 10 

whether long-range ⍺-synchronisation presents lateralised patterns dependent on 11 

voluntary attention orienting and whether these neural patterns can be picked up at a 12 

single-trial level to provide a control signal for active BCI. We collected 13 

electroencephalography (EEG) data from a cohort of healthy adults (n = 10) while 14 

performing a covert visuospatial attention (CVSA) task. The data shows a lateralised 15 

pattern of ⍺-band phase coupling between frontal and parieto-occipital regions after 16 

target presentation, replicating previous findings. This pattern, however, was not 17 

evident during the cue-to-target orienting interval, the ideal time window for BCI. 18 

Furthermore, decoding the direction of attention trial-by-trial from cue-locked 19 

synchronisation with support vector machines (SVM) was at chance-level. The present 20 

findings suggest EEG may not be capable of detecting long-range ⍺-synchronisation 21 

in attentional orienting on a single-trial basis and, thus, highlight the limitations of this 22 

metric as a reliable signal for BCI control.  23 
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SIGNIFICANCE STATEMENT  24 

Cognitive neuroscience advances should ideally have a real-world impact, with an 25 

obvious avenue for transference being BCI applications. The hope is to faithfully 26 

translate user-generated brain endogenous states into control signals to actuate 27 

devices. A paramount challenge for transfer is to move from group-level, multi-trial 28 

average approaches to single-trial level. Here, we evaluated the feasibility of single-29 

trial estimation of phase synchrony across distant brain regions. Although many 30 

studies link attention to long-range synchrony modulation, this metric has never been 31 

used to control BCI. We present a first attempt of a synchrony-based BCI that, albeit 32 

unsuccessful, should help break new ground to map endogenous attention shifts to 33 

real-time control of brain-computer actuated systems.  34 

INTRODUCTION 35 

A few decades ago, imagining an interface between the human brain and a computer 36 

was closer to science fiction than to scientific achievement. Nowadays, brain-computer 37 

interfaces (BCIs) can read out brain activity, extract features from the signal in real-38 

time, and convert them into outputs for monitoring, controlling devices, or even 39 

modifying cognitive states (Blankertz et al. 2016). One significant challenge of BCIs is 40 

finding reliable control signals from brain activity with a sufficiently high signal-to-noise 41 

ratio (SNR) at a trial-by-trial level to allow successful classification. Ideally, the 42 

appearance of the target brain activity should depend on endogenous mental states 43 

that a user can control at will. The use of non-invasive, cost-effective, and light-weight 44 

neuroimaging devices can, in turn, facilitate transfer to real applications. For now, EEG 45 

is the most viable candidate to achieve real-life BCI.  46 



  3 

For example, some EEG-based BCIs have used motor imagery as a control signal 47 

(e.g., imagined right/left-limb movement; Padfield et al. 2019), whereas others have 48 

used neural correlates of covert visuospatial attention (CVSA) (van Gerven and 49 

Jensen 2009; Treder et al. 2011; Tonin et al. 2013). Here, we will concentrate on the 50 

latter. In human behaviour, CVSA is used to direct processing resources to relevant 51 

locations in the environment whilst disengaging from irrelevant locations (Pashler 52 

1999; Foster and Awh 2019). CVSA can be manipulated through a Posner cueing 53 

protocol (Posner 1980), which shows a robust effect on behavioural performance: 54 

higher accuracy and faster reaction times for targets appearing at the cued (attended) 55 

location compared to targets appearing in un-cued, putatively unattended locations 56 

(Posner 1980). 57 

Shifts in CVSA are associated with changes in oscillatory activity in the alpha-band (⍺, 58 

8–14 Hz) at parieto-occipital regions (Klimesch 1999; Foster et al. 2017). Typically, ⍺-59 

power shows an inter-hemispheric imbalance when attention is covertly oriented to 60 

either the left or right visual field, revealing its potential as a control signal for BCI 61 

implementations (Rihs et al. 2007; Thut et al. 2006, see Astrand et al. 2014b for a 62 

review). Inter-hemispheric ⍺-power imbalance corresponds to a late process in CSVA 63 

shifts (van Diepen et al. 2019). First, cueing information is integrated through sensory 64 

pathways in a bottom-up fashion, reaching higher visual areas in the parietal cortex 65 

(e.g., intraparietal sulcus) and eventually frontal regions (e.g., frontal eye fields) 66 

(Petersen and Posner 2012). From there on, top-down modulation shifts attention to 67 

the corresponding hemifield, where it is maintained during target anticipation (Simpson 68 

et al., 2012). The mechanism involved in this top-down modulation is thought to involve 69 

long-range ⍺-synchronisation between the frontal and posterior cortex, which 70 

eventually leads to classical inter-hemispheric imbalances in ⍺-power observed in the 71 
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visual cortex (Sauseng et al. 2005; Doesburg et al. 2009, Lobier et al. 2018). Long-72 

range synchronisation is a potential mechanism to increase the fidelity and 73 

effectiveness of communication throughout the brain (Clayton et al. 2018) among 74 

occipital, parietal, and frontal regions (Sadaghiani and Kleinschmidt 2016). 75 

Synchronising excitability cycles between distant neural populations increases the 76 

likelihood of spikes from one region discharging post-synaptic potentials during a 77 

specific (excitable) phase of the other (Fries, 2015). Despite the evidence supporting 78 

this model (Buschman and Miller., 2007; Cardin et al., 2009), there is still debate on 79 

its temporal dynamics, lateralisation patterns and individual-level variability.  80 

Despite the evidence of links between long-range ⍺-synchronisation and behavioural 81 

performance at group-level analyses (Sauseng et al. 2005; Doesburg et al. 2009; 82 

Doesburg et al. 2016), BCI protocols based on endogenous attention orienting have 83 

only used ⍺-power as a control signal. In our study, we attempt to replicate a previously 84 

demonstrated effect in attention orienting involving long-range ⍺-synchronisation to 85 

assess its feasibility in BCI paradigms. The original publication (Sauseng et al., 2005) 86 

found significant increases in contralateral over ipsilateral connectivity around the time 87 

of target appearance. We hypothesized that, if attention-driven connectivity emerged 88 

in target-centered time windows, it may also be present in the cue-to-target interval, 89 

where participants are putatively shifting attention towards the cued side. Further, this 90 

cue-to-target time window would enable the use of long-range ⍺-synchronisation in 91 

BCIs based on purely endogenous brain signals. Therefore, we will test whether such 92 

contra- and ipsilateral patterns in ⍺-synchronisation emerge in single-trial dynamics 93 

with sufficient signal strength to make them a reliable control signal. To do so, we used 94 

an EEG dataset from a lateralised endogenous spatial attention task to replicate 95 

group-level effects found by Sauseng et al. (2005), to explore the cue-to-target 96 
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interval, and to classify the direction of attention at the single-trial level using long-97 

range ⍺-phase synchronisation as proof of concept for transference to BCI. 98 

MATERIALS AND METHODS 99 

Participants 100 

We used data from a previous, unrelated study (Torralba et al 2016). The dataset 101 

consisted of 15 participants (mean age = 22, SD = 3; 7 female). All participants 102 

provided informed consent and had a normal or corrected-to-normal vision. The study 103 

was ran in accordance with the Declaration of Helsinki and the experimental protocol 104 

approved by the local ethics committee CEIC Parc de Salut Mar (Barcelona, Spain).  105 

Task 106 

Before the experimental session, the participant’s EEG activity was recorded during a 107 

five-minute recording at rest with eyes closed to extract the individual ⍺ frequency 108 

(IAF) used in the analyses. In the experimental session, participants performed a 109 

modified version of the Posner cueing task (see Figure 1A). The trial started with the 110 

onset of a central fixation cross, placed between two placeholders located 20º of visual 111 

angle left and right off-centre, vertically shifted 20º of visual angle below the fixation 112 

cross (see Figure 1A). After 200 ms fixation period, a central auditory cue (100 ms 113 

duration) indicated the likely target location through either high pitch (2000 Hz) or low 114 

pitch (500 Hz) tones, the mapping was randomised across subjects. Participants 115 

should covertly attend to the indicated side, without moving their eyes, during a jittered 116 

inter-stimulus interval (ISI; 2000 ± 500 ms). The use of a jittered ISI was employed in 117 

order to avoid participants using automatic temporal attention to solve the task. Next, 118 
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the target (a Gabor grating tilted 45º left or right, 50 ms duration) appeared briefly 119 

inside one of the placeholders, with 75% validity regarding the cued location. The 120 

grating contrast was adjusted individually, as described below. A noise pattern with an 121 

equal overall luminance as the target was presented at the alternative placeholder, 122 

with the exact timings as the target. Participants were asked first to indicate if they had 123 

detected the target (yes/no detection) and, subsequently, the target’s tilt (left/right 124 

discrimination). Both answers were made by keypress, in an un-speeded fashion, and 125 

with response mapping (top-bottom) orthogonal to the attention manipulation and 126 

varied from trial to trial. A trial was considered correctly answered only when 127 

participants both detected the stimulus and discriminated the hemifield in which it was 128 

presented. An inter-trial interval of 1000 ms followed the response, and a new trial 129 

began. Unless otherwise noted, the EEG analyses were done on validly cued trials 130 

that responded correctly. On average, 289.9 ± 11.3 trials from each participant were 131 

employed for the EEG analysis. 132 

The Gabor gratings used as stimuli were 0.002 cycles per degree, with a size of 3.35º, 133 

embedded in white noise. The contrast was adjusted individually using a preliminary 134 

threshold titration procedure in which thresholds for both sides (left and right) were 135 

independently adjusted to a 70% detection rate when cued (in the attended location). 136 

Stimuli were presented on a 21” CRT screen with a refresh rate of 100 Hz and a 137 

resolution of 1024 x 768 pixels. The experiment was implemented in MATLAB R2015b 138 

(MATLAB, RRID: SCR_001622) using the Psychophysics Toolbox (Psychophysics 139 

Toolbox, RRID: SCR_002881). 140 
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EEG recording and pre-processing 141 

EEG recordings were obtained from 64 Ag/AgCl electrodes positioned according to 142 

the 10-10 system with AFz as ground and nose tip as reference. Impedance was kept 143 

below 10 kΩ. The employed system was an active actiCHAmp EEG amplifier from 144 

Brain Products (Munich, Germany). The signal was sampled at 500 Hz and processed 145 

in MATLAB 2020 and 2015 (MATLAB, RRID: SCR_001622) using custom functions 146 

and the FieldTrip toolbox (FieldTrip, RRID: SCR_004849). 147 

Manual artefact rejection was applied to discard trials where any EOG components 148 

had an amplitude higher than 50 µV. Defective channels were repaired using 149 

neighbours calculated by triangulation and splines for interpolating channel data. 150 

Then, the data was demeaned and notch filtered at 50 Hz to exclude line noise. Next, 151 

fifth-order high-pass and sixteenth-order low-pass IIR Butterworth filters were 152 

employed to limit the signal between 0.16 and 45 Hz (Sauseng et al. 2005). The 153 

filtering was done forward and backwards (two-pass), which resulted in zero phase 154 

lag.  155 

Time-frequency analysis 156 

We performed long-range synchronisation analyses in two time windows. The first was 157 

time-locked to the target onset (target-locked) to replicate Sauseng et al. (2005) 158 

methods and validate our analysis pipeline. The second was time-locked to the cue 159 

onset (cue-locked) to estimate long-range ⍺-phase synchronisation during covert 160 

visuospatial attention shifts.  161 
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Following Sauseng et al. (2005), for the target-locked analysis, we used two windows 162 

of 200 ms: a pre-target (-200 to 0 ms) and a post-target window (200 ms to 400 ms). 163 

The latter excludes the interval 0 to 200 ms, most affected by the phase resetting effect 164 

of target presentation. For the cue-locked analysis, we used the cue-to-target time 165 

window between 500 ms and 1500 ms post-cue and divided it into five consecutive 166 

and non-overlapping 200 ms windows. By analysing from 500 ms onwards we avoid 167 

the event related potential (ERP) caused by cue presentation and allow endogenous 168 

attention shift to build up, a process which takes a few hundreds of milliseconds (Foxe 169 

and Snyder 2011). The cue-locked analysis period ends at 1500 ms, which was the 170 

minimum possible duration of the cue-to-target interval (duration of 2000 ± 500 ms, 171 

see methods). All epoched data was mirror-reflected to avoid edge artefacts (Cohen 172 

2014) when performing the time-frequency analysis. Afterwards, data were trimmed, 173 

and reflected edges were removed. 174 

We computed the Fourier coefficients using 5-cycle Morlet wavelets (Grossmann and 175 

Morlet 1984) with 16 logarithmically spaced frequencies ranging from 2.6 Hz to 42 Hz. 176 

For the analysis aimed at replicating Sauseng’s results, we only used wavelets within 177 

the upper ⍺-band (9.54 – 14.31 Hz) (Sauseng et al. 2005), whereas, for the exploratory 178 

analysis, we used the whole frequency range (i.e., 2.6 – 42 Hz) to explore further long-179 

range ⍺-phase synchronisation in other frequency bands beyond the IAF. 180 

Connectivity measures 181 

Three clusters of electrodes of interest (EOI) were defined for the connectivity 182 

analyses, mimicking Sauseng et al., 2005: A fronto-medial (FM) EOI cluster (Fz, FC1, 183 

FC2) and two symmetric posterior clusters located either atthe parietal left (PL) region 184 
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(P3, PO3, PO1) or the parietal right (PR) region (P4, PO4, PO2). To infer connectivity 185 

between each parietal EOI cluster and the FM location, we used Phase Locking Value 186 

(PLV) (Lachaux et al. 1999). This metric reports the consistency of phase differences 187 

between two locations across multiple trials and is not affected by power differences. 188 

Mathematically, the PLV is expressed as the absolute value of the average complex 189 

unit-length phase differences:  190 

𝑃𝐿𝑉(𝑥, 𝑦) = |
1

𝑛
∑ 𝑒𝑖(𝜑𝑥(𝑘)−𝜑𝑦(𝑘))𝑛

𝑘=1 |          (1) 191 

where n corresponds to the total number of trials indexed by k and 𝜑𝑥, 𝜑𝑦 correspond 192 

to the phases at electrodes x and y, respectively. PLV was calculated according to 193 

equation (1) using the phases for every combination of individual electrode pairs of the 194 

FM-PR and FM-PL networks. Then, these values were averaged, resulting in a time 195 

series of PLV FM-PR and FM-PL networks for each of the frequencies of interest and 196 

condition (attended left and attended right) trials. Subsequently, the PLV time series 197 

were collapsed as either ipsilateral (FM-PL network and attend left; FM-PR and attend 198 

right) or contralateral (FM-PR network and attend left; FM-PL and attend right). 199 

Therefore, for each participant and frequency of interest, two time series of PLV were 200 

obtained (contra- and ipsilateral PLV). 201 

Classification 202 

The trial classification was performed using support vector machines (SVM). We 203 

selected FM-PR and FM-PL connectivity as input to the SVM. Attended right and 204 

attended left labels for each trial were provided as ground truth for the algorithm. The 205 

main goal of the classifier was to infer, on each trial, whether a participant was 206 
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attending on the left or right hemifield, based on the long-range ⍺-phase 207 

synchronisation in the left and right fronto-parietal networks. Note that PLV is 208 

computed across trials, and SVM aims to classify on a single-trial basis, so PLV was 209 

also calculated across time points (Cohen 2015). As a validation step, we repeated 210 

the target-locked analysis employing this metric (i.e., cross-time PLV) before 211 

proceeding with the cue-locked classification attempt.  212 

We divided the cue-locked interval ranging from 500 to 1500 ms in bins of 200 ms, 213 

yielding five values for FM-PR connectivity and five for FM-PL connectivity. The 214 

resulting ten values were used as input to the SVM to perform the optimisation and 215 

classification of the trials. Note that for the classification, we used the data from the 216 

participant that achieved a significant difference in PLV values between parietal left 217 

and right EOI clusters in all cue-to-target windows (P10). Trials were split into a training 218 

(80%) and testing (20%) set of trials to avoid overfitting. Then, the training set was 219 

subdivided into sub-training (80%) and validation sets (20%). 220 

Our initial approach was to use a linear kernel for the classification. However, after 221 

evaluating the option through cross-validation of the validation set and obtaining a 222 

negative result (i.e., classification was not better than chance level), we decided to use 223 

a Gaussian kernel (i.e., Radial Basis Function). In order to select the most suitable 224 

and efficient values for classifying attended left and attended right trials from the 225 

validation set, we optimised the parametric space of the SVM. This comprised margin 226 

and gamma (γ) parameters, which were explored in logarithmic steps from 10-6 to 103 227 

for both constants and every fold. 228 
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Inter-hemispheric power imbalance analysis 229 

Besides calculating the long-range ⍺-phase coupling, we also computed the inter-230 

hemispheric ⍺-power imbalance at parietal regions, both at the individual and at group-231 

level, as a reality check. For this reality check, we used Thut et al., (2006) for guidance 232 

to choose the electrodes of interest. First, we performed an independent component 233 

analysis (ICA), during which 3±1 components were discarded on average per 234 

participant, based on a visual inspection, the components’ topography, and time 235 

course. The rejected components comprised both ocular and motor artifacts. Please 236 

note that ICA was only performed for the power analysis, not for the connectivity 237 

pipeline, in order to replicate the exact pre-processing as seen in Sauseng et al., 238 

(2005) and, importantly, because phase of electrophysiological recordings is affected 239 

when ICA are rejected (Thatcher et al., 2020).  240 

The frequency of interest used in lateralisation analyses was adjusted for each 241 

participant depending on the individual ⍺ frequency (IAF) extracted from the five-242 

minute recording (eyes closed) previous to the experiment (see above). The IAF was 243 

determined based on the presence of a single peak (i.e., a local maximum) within the 244 

considered frequency band of interest (5-15 Hz) on the power spectrum density (PSD). 245 

A spectrogram was extracted for each parieto-occipital electrode (P7, P5, P3, P1, Pz, 246 

P2, P4, P6, P8, PO3, PO4, POz, PO9, PO10, O1, Oz, O2) using the Welch method 247 

(segments of 1000 ms with a 10% overlap, a Hanning taper to avoid spectral leakage 248 

and 0.25 Hz frequency resolution). The power spectrum was averaged across 249 

electrodes for each participant and normalised by the mean power from 1 to 40 Hz 250 

(Vigué-Guix et al., 2022). 251 
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To extract the ⍺-power during the task, we selected the epoch from -1.5 to 3 s in cue-252 

locked trials by convolving the EEG signal with a set of complex Morlet wavelets 253 

(Grossmann and Morlet 1984) of 5 cycles (nc). The frequencies of the wavelets ranged 254 

from IAF ± 1 Hz, in 1 Hz steps. For instance, an IAF peak of 10 Hz would have a 255 

bandwidth ranging from 8.33 Hz to 11.67 Hz. Power was extracted from two symmetric 256 

regions of interest precisely in PR (P6, P8, PO4, O2) and PL locations (P5, P7, PO3, 257 

O1) in order to replicate as closely as possible the original EOI electrodes used in Thut 258 

et al., (2006). Power imbalance was computed according to the formula: 259 

𝐿𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝐼𝑛𝑑𝑒𝑥 =
𝛼(𝑃𝑅 𝐸𝑂𝐼)− 𝛼(𝑃𝐿 𝐸𝑂𝐼)

𝑚𝑒𝑎𝑛 𝑜𝑓 𝛼(𝑃𝐿+𝑃𝑅 𝐸𝑂𝐼)
         (2) 260 

where ⍺ (PL EOI) and ⍺ (PR EOI) are the average of ⍺-power over left and right 261 

electrodes of interest, respectively. Equation (2) leads to smaller (negative) values 262 

where ⍺-activity is more prominent over the left hemisphere than the right (⍺ (PL EOI) 263 

> ⍺ (PR EOI)) and to larger (positive) values for the opposite pattern (⍺ (PL EOI) < ⍺ 264 

(PR EOI)). According to theory and previous findings, values of LI reflecting attention 265 

directed to the right hemifield should be larger than LI values reflecting leftward 266 

directed attention. 267 

Finally, we also checked whether there was any relationship between the ⍺-power 268 

imbalance and the contra-ipsi difference of PLV for each attended location. We 269 

explored the correlations between ⍺-lateralisation indexes and the effect in PLV 270 

contra-ipsi differences at the pre-target (-200 to 0 ms) and post-target (200 to 400 ms) 271 

windows using Pearson correlations.  272 
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Statistical analyses 273 

A one-tailed nonparametric Monte Carlo permutation test was computed to determine 274 

significant differences in PLV between networks for each attended location (Mostame 275 

et al. 2019). For each participant, the attended right or left labels were randomly 276 

assigned to trials, and surrogate PLVs were calculated from the resulting dataset. This 277 

process was repeated 10,000 times (iterations) to create a null distribution of PLV 278 

values. The obtained p-value corresponded to the proportion of surrogate iterations 279 

with a contra-ipsi difference larger than the actual measured value (one-tailed test). 280 

This process was performed on every time window defined in the previous section. 281 

For the group analysis, the procedure was equivalent, but surrogate PLV distributions 282 

were averaged across participants before the statistical test. 283 

For the statistical assessment of the ⍺-power imbalance over time between attended 284 

left and attended right trials, we performed a cluster-based permutation test procedure 285 

(100,000 randomisations) for each participant and at the group-level (one-tailed 286 

permutation test) (Maris and Oostenveld 2007; Meyer et al. 2021). We assessed that 287 

lateralisation indexes for attended right and attended left trials were two significantly 288 

different distributions by applying a one-tailed t-test (independent samples) with ⍺-289 

level = 0.05 for each participant. At group-level, we performed a one-tailed paired t-290 

test with the mean lateralisation indexes for attended right and attended left trials for 291 

each participant with ⍺-level = 0.05. Correlations between ⍺-power imbalance and the 292 

contra-ipsi difference of PLV were corrected for multiple comparisons by applying the 293 

False Discovery Rate (FDR) of Benjamini and Hochberg (Benjamini and Hochberg 294 

1995). 295 
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RESULTS 296 

Behavioural results 297 

Five participants who presented equivalent detection and discrimination rates for 298 

stimuli appearing at cued and un-cued locations were discarded from the analysis, 299 

leaving a total of 10 participants. As expected, behavioural results showed that the 300 

detection rate calculated based on both the detection response (Yes/No) and the 301 

discrimination response (Left/Right; chance level at 0.25) was superior for cued 302 

(attended) trials 0.68 ± SEM=0.02 compared to un-cued (unattended) ones 0.46 ± 0.04 303 

(see, Figure 1B). The pattern on each hemifield was equivalent: on the left hemifield 304 

attended = 0.68 ± 0.03 and unattended = 0.47 ± 0.03; for the right hemifield attended 305 

= 0.67 ± 0.03, and unattended = 0.44 ± 0.06. We used one tailed t-tests to assess that 306 

performance was above chance level (25%) for each of the conditions (attended and 307 

unattended) and hemifields separately: Attended Left trials (0.68±0.11, p-value=2·10-308 

7, t(9)=12.593), Attended Right trials (0.67±0.11, p-value=3·10-7, t(9)=12.226), 309 

Unattended Left trials (0.47±0.08, p-value=5·10-6, t(9)=8.876) and Unattended Right 310 

trials (0.44±0.20, p-value=0.06, t(9)=3.117).  311 

Target-locked long-range ⍺ synchrony  312 

Here, we describe the results from the target-locked analysis, carried out to reproduce 313 

Sauseng et al.’s (2005) findings. Long-range synchrony was estimated using PLV 314 

between frontal EOI and each of two lateralised parietal EOI. Figure 2 shows the 315 

group-level connectivity analysis of the upper ⍺-band (9.54 - 14.31 Hz). Phase 316 

coupling is depicted as the mean across the pre-target window (-200 to 0 s) and the 317 
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post-target window (200 to 400 ms), as well the temporal course (from to -500 to 500 318 

ms). Regarding the left fronto-parietal network (Figure 2A left), PLV was consistently 319 

higher when attention was directed rightward (contralateral) than leftward (ipsilateral) 320 

in both pre-target and post-target windows, although the PLV difference only reached 321 

significance in the post-target window (p < 0.05). Regarding the right network (Figure 322 

2A right), PLV was stronger when attention was directed leftward (contralateral) than 323 

rightward (ipsilateral) in the post-target window, whereas the pre-target window does 324 

not show this difference. Neither window, however, emerged as significant. This 325 

pattern generally replicates Sauseng et al. (2005) results, as indicated by the dashed 326 

lines in Figure 2A representing the mean phase-coupling from their study. Lower 327 

panels in Figure 2A display the temporal course of phase coupling to provide a time-328 

resolved illustration of the phase-coupling effect. For the attended right condition, PLV 329 

values in the left network should be higher than PLV values for the attended left. The 330 

inverse pattern should hold in the right network. Moreover, Figure 2B presents the 331 

PLV with side of attention collapsed as contra- and ipsilateral with respect to the 332 

corresponding network. Individual PLV values, marked as black dotted line s, exhibit 333 

a consistent contra- to ipsilateral increase in the post-target window. Group-level 334 

statistical analysis further showcased a significant difference limited to this time 335 

window (200 to 400 ms, p < 0.05). This result was controlled by avoiding the pre-336 

processing band-pass filter which may affect phase estimation, and by computing a 337 

Hjorth filter to avoid the effects of volume conduction (Hjorth 1975). Both analyses 338 

maintained the significant differences between contralateral and ipsilateral PLV (p < 339 

0.05).  340 

At individual level, only 3 out of 10 participants showed significant contralateral PLV 341 

increase (P02, p < 0.01; P05, p < 0.01; P07, p < 0.01; see Figure 2-1). The lack of a 342 
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significant group-level effects in the pre-target window is consistent with individual 343 

phase coupling, as a multiple subject present a trend in the opposite direction as 344 

expected (i.e., ipsilateral over contralateral PLV; see Figure 2-1). We further assessed 345 

single-subject synchronization through the phase linearity measurement (PLM) as it 346 

has been recently reported to be a robust metric for trial-level connectivity (Baselice 347 

et al., 2018). We did not find any significant effects in any participant (p > 0.05; see 348 

Figure 2-2).  349 

Cue-locked long-range ⍺ synchrony 350 

In the previous section, we replicated the results as in Sauseng et al., (2005). The 351 

findings from here onwards correspond to original results to ascertain whether 352 

attention-based long-range connectivity during the attention-orienting period could be 353 

a reliable signal for BCI control. We explored the cue-to-target interval before target 354 

presentation (500 ms to 1500 ms after cue onset). Considering that the cue indicates 355 

the hemifield to which participants should voluntarily lateralise attention, differences in 356 

contralateral and ipsilateral connectivity may potentially emerge in this time window. 357 

So far, we have seen that attention shifts had significant consequences on behaviour 358 

and target processing (post-target connectivity). At the group level, however, no 359 

significant difference between contralateral and ipsilateral connectivity in the upper ⍺-360 

band was found in any of the five 200 ms time windows considered in the cue-to-target 361 

period (see Figure 3A). At the individual level, 7 participants had a significant 362 

contralateral PLV increase in at least in one window (see Figure 3-1). However, only 363 

one participant (P10) showed this effect in all time windows and, furthermore, did not 364 

present a significantly higher contralateral connectivity in pre-target and post-target 365 

time windows of the target-locked analysis.  366 



  17 

We chose the upper ⍺-band a priori given Sauseng et al. (2005)’ findings, as well as 367 

the effects in the target-locked analyses from the present dataset. However, we 368 

conducted additional analyses to explore other frequencies (between 2.4 and 42 Hz) 369 

in search of differences between contralateral and ipsilateral PLV (see, Figure 3B). 370 

Values were collapsed as the difference between both measures (contra-ipsi) and z-371 

scored. Over time, neither clear trends across frequencies nor apparent increases 372 

were observed in contralateral or ipsilateral connectivity. Individual results showed the 373 

same trend and did not present relevant PLV patterns in any participant beyond those 374 

from upper ⍺-band findings in P10 (see Figure 3-2).  375 

Classification 376 

The results are hardly promising in generalising the use of long-range connectivity for 377 

BCI control. However, BCI protocols are often very sensitive to individual patterns. 378 

Here, we intended to seek a proof-of-concept, from at least a single participant. With 379 

this goal in mind, we attempted single-trial classification, as either attended right or 380 

attended left, according to cue-locked connectivity patterns. We selected the 381 

participant (P10) for whom we found significant connectivity differences in the cue-to-382 

target time window of the cue-locked analysis. The total number of trials was 338.  383 

We carried out a validation of cross-time PLV in the target-locked window to 384 

understand whether this metric could replicate group-level differences between contra- 385 

and ipsilateral networks found through cross-trial PLV. These results can be seen in 386 

Figure 4A. Statistical analysis showed no significant differences between contra- and 387 

ipsilateral scenarios in either time window. Individual values were also non-significant 388 

(see Figure 4-1). Considering the large parametric landscape of SVM 389 
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implementations, we optimised the gamma and margin parameters of a Gaussian 390 

kernel (see Figure 4B). From a qualitative perspective, no clear maximum validation 391 

accuracy values emerge from the landscape, although quantitative analysis identified 392 

minimum values of margin and γ to be used on the test set in every fold. The lack of a 393 

clear minimum suggests that the model may be unable to classify individual trials 394 

regardless of the parametric values.  395 

Ten-fold cross-validation was carried out to maximise the available data and improve 396 

the classification accuracy. Single trials predicted as either attended right or attended 397 

left were contrasted with the actual cue direction in each trial. Classification outcomes 398 

are shown in Figure 4C, which resulted in virtually chance-level sorting (0.541). The 399 

confusion matrix displays the distribution of each class, revealing the skewed 400 

distribution of values towards attended right labels, which is far from the ideal 401 

clustering along the diagonal of the matrix. Finally, we employed two additional 402 

algorithms to classify both attended right and attended left trials. These consisted of 403 

shrinkage linear discriminant analysis (sLDA) and Riemannian minimum distance to 404 

the mean (RMDM), as they are shown to work well in small training sets (Lotte et al., 405 

2018). Both decoding techniques yielded chance-level results (see Figure 4-2) 406 

Inter-hemispheric power imbalance  407 

As a reality check on the dataset, we addressed whether there was a difference in the 408 

⍺-power inter-hemispheric imbalance between attended left and attended right trials. 409 

We performed the cue-locked analysis at the group level, using the Lateralization 410 

Index (LI) described by Thut et al. (2006) (see Figure 5A). On average, the 411 

lateralisation index was significantly different between attended right and attended left 412 
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in the expected direction (p < 0.01, Cohen’s d = -0.8356). At the individual level, 7 out 413 

of the 10 participants showed a significant difference in lateralisation index between 414 

the two attention conditions (p < 0.05; see Figure 5-1). We also performed a time-415 

resolved version of this analysis within the cue-to-target window. A cluster-based 416 

permutation test (Figure 5B) showed significance within two time periods, from 0.66 417 

to 0.82 s and 1.34 to 1.5 s. At the individual level, only for one participant (P01), the 418 

cluster-based permutation test revealed a significant cluster over time from 0.6 to 1 s 419 

(see Figure 5-1). These results are consistent with the results of previous studies (e.g., 420 

Tonin et al. 2012; Thut et al. 2006), at least at the group level. It is more challenging 421 

to compare single-subject data with other studies, as it usually is not reported or 422 

statistically analysed. 423 

Finally, we explored the potential correlation between ⍺-power inter-hemispheric 424 

imbalance measured with the lateralization index and ⍺-phase coupling for each 425 

attended location (see Figure 5 C-D). In the pre-target window (Figure 5C), the 426 

correlations for attended right (r = -0.25, p > 0.05) and attended left (r = -0.13, p > 427 

0.05) did not reach significance. Neither did the correlations for attended right (r = -428 

0.44, p > 0.05) and attended left (r = -0.42, p > 0.05) at the post-target (Figure 5D) 429 

window. A visual inspection indicated that participants showing an effect in PLV 430 

contra-ipsi differences are below the correlation fit in pre-target and post-target 431 

windows, suggesting that those participants have a more negative effect in PLV 432 

contra-ipsi differences.  433 

DISCUSSION 434 

The present study addressed the relationship between shifts in visuospatial attention 435 

and the lateralisation of ⍺-band coherence between frontal and parietal electrodes, to 436 
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assess their feasibility as a control signal in BCI. Previous studies, using group-437 

averaged multi-trial analyses, found increased long-range ⍺-synchronisation in the 438 

hemisphere contralateral to the attended hemifield, and suggested that it reflects top-439 

down mechanisms of visual spatial attention (Sauseng et al., 2005; Doesburg et al., 440 

2009). We reasoned that if contra- to ipsilateral differences in synchronisation would 441 

emerge as a result of endogenous top-down mechanisms, they should be present 442 

following cue presentation as participants shift their attention. This hypothesis stems 443 

from how instructing participants to shift their attention laterally before target 444 

appearance engages frontoparietal visual processing pathways (Corbetta and 445 

Shulman 2002; Hopfinger et al. 2000; Asplund et al. 2010). Here, we sought proof that 446 

long-range neural synchronisation engaged in this network could be used for BCI 447 

control on a trial-by-trial basis.  448 

In attention-orienting protocols, the cue-to-target period offers the possibility of 449 

implementing a BCI control in anticipation of the target appearance. This would open 450 

the possibility of designing active BCI systems controlled by the user’s voluntary 451 

decision to attend left/ rightward covertly. Therefore, our study employed long-range 452 

⍺-synchronisation in the frontoparietal network (FPN) as means to investigate whether 453 

this brain measure could potentially discriminate attended locations of the left/right 454 

visual field.  455 

We found significant group-level differences in contra- to ipsilateral long-range ⍺-456 

synchronisation around target onset, replicating Sauseng et al. (2005). These results 457 

demonstrate the involvement of lateralised long-range ⍺-synchrony along the FPN 458 

during the post-target period and especially reveal the potential of EEG to grasp these 459 

effects, at the group level. However, similar differences in fronto-parietal synchrony 460 
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were not observed during the cue-to-target time window, which was the time of interest 461 

for BCI purposes. We also extended the cue-locked analysis to other frequencies 462 

outside the ⍺-band, with equally negative results. Finally, given the high individual 463 

variability of single-trial analysis outcomes, we attempted to classify the individual trials 464 

of one selected participant for whom significant synchronisation differences following 465 

cue presentation were found, as a benchmarking process. The results nevertheless 466 

rendered chance-level classification. Below, we discuss how these results may be 467 

influenced by various methodological aspects (e.g., different time windows, classifier’s 468 

input metric) and how they fit into state-of-the-art literature. Please note that because 469 

the focus of our study was on single-trial analysis, the sample size was relatively small 470 

for the group analyses (n = 10). Although this sample size was sufficient to confirm 471 

previous findings on long-range ⍺-synchronisation and lateralization index (Sauseng 472 

et al., 2005; Thut et al., 2006), the negative results of the group analyses should be 473 

interpreted with caution.   474 

Fronto-parietal network synchronisation characterises 475 

visuospatial attention 476 

A result from our study is that long-range ⍺-synchronisation within the FPN was 477 

associated with the consequences of visuospatial attention orienting, in line with its 478 

putative role in this cognitive process (Jensen et al. 2015; Sacchet et al. 2015; 479 

Doesburg et al. 2009; Siegel et al. 2008). We observed significant increase in 480 

contralateral vs. ipsilateral upper ⍺ coherence for targets appearing at the attended 481 

location. According to the current attention theories, the mechanism underlying this 482 

finding may be inherently related to top-down processing. More specifically, frontal 483 
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regions such as the frontal eye fields (FEF) and the intraparietal sulcus (IPS) may 484 

modulate attention by causing a state of ⍺-band desynchronisation in the visual cortex 485 

contralateral to attended hemifield (Corbetta and Shulman 2002; Kastner and 486 

Ungerleider 2000; Helfrich et al. 2018; Capotosto et al. 2009; Marshall et al. 2015). 487 

This explanation further aligns with the well-established evidence that contralateral ⍺-488 

power suppression (also reproduced in our results) enables visual stimuli processing 489 

in the attended location (Doesburg et al. 2009; Thut et al. 2006; Yamagishi et al. 2003; 490 

Babiloni et al. 2006; Foxe and Snyder 2011; Klimesch et al. 2007; Lange et al. 2013), 491 

and that cyclic phase-dependent inhibition in low-level visual cortex dictates 492 

behavioural performance (i.e., reaction times) (Haegens et al. 2011; Klimesch 2012; 493 

Jensen et al. 2014; Samaha et al. 2015; VanRullen 2016). Both accounts fit with the 494 

idea that local ⍺-power and long-range ⍺-synchronisation may have separate roles in 495 

attention and perception (Bonnefond et al. 2017; Palva and Palva 2007, 2011; 496 

Sadaghiani and Kleinschmidt 2016). 497 

Our results of the increased contralateral synchronisation within the FPN replicate the 498 

work of Sauseng et al. (2005) and validate our methodology and analysis pipeline 499 

(e.g., time-frequency analysis, synchronisation metric), setting the ground for the 500 

intended proof of concept test regarding transference to BCI. However, lateralised 501 

fronto-parietal connectivity patterns in attentional and perceptual disposition remain 502 

challenged in the literature together with the role of ⍺ power/phase (Ruzzoli, Torralba 503 

et al. 2019; van Diepen et al. 2019; Antonov et al. 2020; Keitel et al., 2022). Lobier et 504 

al. (2018) found that ⍺-synchronisation was associated with visuospatial attention but 505 

revealed distinct lateralisation patterns regarding the visual system and top-down 506 

attentional networks. They showed stronger ipsilateral synchronisation within the 507 

visual system (in line with Siegel et al. 2008; Doesburg et al. 2009) but no consistent 508 
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lateralisation in long-range networks, suggesting their different involvement in 509 

visuospatial attention. A study by D'Andrea et al. (2019) found a modulation of 510 

frontoparietal ⍺-β cross-frequency synchronisation during attention orienting, but not 511 

in ⍺-synchronisation alone. Further, this cross-frequency connectivity pattern was 512 

strongly associated with right hemisphere frontal dominance, in line with Heilman and 513 

van den Abell (1980) and Zago et al. (2017). This finding agrees with previous 514 

evidence of the crucial role of the right FEF in top-down attentional modulation 515 

(Esterman et al. 2015; Hung et al. 2011; Silvanto et al. 2006; Veniero et al., 2021), 516 

supported by evidence using TMS (e.g., Capotosto et al. 2009). In light of this evidence 517 

and our results, the exact relationship between contralateral frontoparietal ⍺-518 

synchronisation and shifts in attention orienting is still unclear. Positive findings, 519 

however, such as the ones in the present study using a target-locked analysis, 520 

represent a basis for exploring earlier time windows capable of shedding light on the 521 

mechanism underlying FPN ⍺-synchronisation.  522 

Correlations between long-range ⍺-synchronisation and individual reaction times in 523 

visuospatial tasks suggest this neural correlate may be observable at a single-subject 524 

level (Lobier et al., 2018). However, significant group-level target-locked dynamics of 525 

increased synchrony did not transfer to all individuals in our study. The observed 526 

variability may be partially explained by individual anatomical differences in the neural 527 

substrate of attention (e.g., superior longitudinal fasciculus) (Marshall et al., 2015). 528 

Findings employing magnetic resonance imaging (MRI) suggest that volumetric 529 

differences in these structures impact local visual cortex oscillations, leading to 530 

variability in EEG traces (Marshall et al. 2015; D’Andrea et al. 2019). However, this 531 

variability of individual results is challenging to set in the perspective of previous 532 

research simply because published studies do not report single-subject statistics. 533 
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Ultimately, the outcomes of this study leave an incomplete understanding of whether 534 

there is a reliable group effect that does not extend to all individuals or, contrarily, 535 

whether individual effects of specific participants are large enough to induce a group-536 

level finding in previous research.  537 

Lateralized patterns of ⍺-synchronisation appear in target-538 

locked but not cue-locked analysis 539 

In our study, long-range ⍺-synchronisation presented contralateral increases at the 540 

post-target (200 to 400 ms, with t = 0 as target appearance) and the pre-target window 541 

(-200 to 0 ms), but only the former time window resulted significantly. This result is 542 

slightly different from Sauseng et al. (2005), who observed significant increases in 543 

contralateral synchronisation within the FPN network at both time windows. However, 544 

the numerical differences were in the same direction in both studies, leaving the 545 

possibility that statistical significance be just due to a lack of statistical power. Another 546 

potential explanation for the absence of significant findings at the pre-target window 547 

may be the difference in experimental paradigms. The task employed here had a 548 

longer post-cue interval ranging from 2000 to 2500 ms (jittered between trials), 549 

compared to Sauseng et al. (2005) (i.e., 600-800 ms). If participants shifted attention 550 

at varying times from cue onset up to target appearance, this might explain why we 551 

could not capture the effect in anticipatory visuospatial attention.  552 

In cueing paradigms, bottom-up integration of cue information through sensory 553 

pathways precedes top-down modulation of visuospatial attention (Simpson et al., 554 

2011). The temporal course of voluntary directed attention is thought to begin only 555 

after 150 ms from cue onset and involves frontal regions approximately after 350 ms. 556 
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Furthermore, from 400-500 ms onwards, frontal and parietal regions are thought to be 557 

involved in attentional shifting and target discrimination (Simpson et al. 2011). Thus, if 558 

the FPN does present direction-specific synchronisation, we anticipated this would 559 

appear from about 500 ms after cue onset onwards. Contrary to what we expected, 560 

we did not observe any significant contra- to ipsilateral differences in the cue-to-target 561 

time windows (500 to 1500 ms after cue onset). Previous studies employing a similar 562 

time window showed lateralisation patterns in parietal regions in ⍺ and β bands (Siegel 563 

et al. 2008; Pantazis et al. 2009) and frontoparietal lateralisation in low and high-564 

frequency bands (Green and McDonald 2008; Gregoriou et al. 2009). Therefore, we 565 

extended our cue-locked analysis to other frequencies but again obtained no 566 

significant contra- to ipsilateral differences. Note that PLV values were averaged 567 

across 200 ms windows, and this excludes, to a certain extent, the confound of frontal 568 

and parietal regions having different activation over time. Altogether, despite the 569 

evidence across multiple frequencies of synchronisation in the cue-to-target time 570 

window, we did not find patterns of lateralised cue-locked connectivity within or outside 571 

the ⍺-band.  572 

Our negative results in the cue-locked analysis may align with the notion that late 573 

periods after cue onset are associated with direction-specific activity in parieto-574 

occipital regions but not in frontal regions (e.g., FEF) (Doesburg et al. 2009; Simpson 575 

et al. 2011). Long-range ⍺-synchronisation may, therefore, be associated to an initial 576 

shift of attention (shortly after cue presentation) and later (close to target presentation) 577 

to attention maintenance at the directed hemifield (Lobier et al. 2018; Kastner and 578 

Ungerleider 2000; Hopfinger et al. 2000; Grent-'t-Jong and Woldorff 2007). This idea 579 

resonates with the essential question formerly posed by Sauseng et al. (2005), 580 

debating whether frontal involvement in long-range ⍺-synchronisation is a causative 581 
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or consequential correlate of posterior activation. Furthermore, it motivated the 582 

exploration of cue-locked intervals where bottom-up and top-down processing may 583 

have elicited stronger effects on ⍺-band synchronisation.  584 

Finally, to ensure participants correctly lateralised their attention during the cue-to-585 

target interval, we carried out a reality check by calculating the ⍺-power imbalance 586 

using the lateralisation index during this period (Thut et al. 2006). There was a clear 587 

difference in the averaged lateralisation index during the time course between 500 and 588 

1500 ms at group-level. We further employed the lateralisation index to perform an 589 

exploratory analysis of its relationship with the difference in ⍺-synchronisation between 590 

contra- and ipsilateral networks. Considering lateralised local ⍺ activity and lateralised 591 

long-range ⍺-synchronisation are both relevant in successful attention orienting, we 592 

explored whether these two mechanisms would have had a significant positive 593 

correlation. Therefore, individuals with high lateralisation index values should also 594 

present lateralised synchronisation within the FPN. In contrast to our expectations, 595 

there was no significant correlation between these two metrics, neither at the pre-596 

target nor the post-target time windows.   597 

Ultimately, we did not observe a significant increase in contralateral long-range ⍺-598 

synchronisation in the five 200 ms bins following cue onset. This time frame offered 599 

potential as it occurs much before target appearance and could be robustly employed 600 

in a covert visuospatial BCI decoder. By expanding our analysis to several frequencies 601 

and carrying out the aforementioned reality checks, we conclude that PLV measured 602 

from EEG may not serve as a reliable metric in capturing direction-specific 603 

synchronisation from frontal to posterior regions, despite this evidence being present 604 

in parietal to occipital synchrony (Doesburg et al. 2009). 605 



  27 

EEG estimates of long-range ⍺-synchronisation may not 606 

serve as a reliable control signal for BCI 607 

The use of long-range ⍺-synchronisation to decode attentional direction yielded 608 

chance-level results. We employed 200 ms time bins of contralateral and ipsilateral 609 

FPN connectivity as input in an SVM classifier. Non-linear SVMs are widely employed 610 

in decoding cognitive neural correlates of behavioural states (Lotte et al., 2007). 611 

Furthermore, SVMs outperform other classifiers, such as artificial neural networks, 612 

non-linear Bayesian estimators, and recurrent reservoir networks (Astrand et al. 613 

2014a). We also employed sLDA and RMDM classifiers, as they have low 614 

computational cost, require small training sets, and perform well in real-time 615 

applications (Lotte et al., 2018), with no success.  616 

Prior work using SVMs, mainly centred around primate models and invasive 617 

recordings, successfully decoded the attentional spotlight from frontal sites (Gaillard 618 

et al. 2020; Tremblay et al. 2015; Esghaei and Daliri 2014). Clearly, these methods 619 

(i.e., LFP, intracranial-EEG) have a higher signal-to-noise ratio (SNR) compared to 620 

non-invasive imaging. However, the objective of the present study was to offer a BCI 621 

proof of concept using ⍺-synchronisation as a control signal. Therefore, a non-invasive 622 

and portable technique must be employed. Other non-invasive modalities such as 623 

functional magnetic resonance imaging (fMRI), where the temporal resolution is too 624 

low for real-time implementations, or magnetoencephalography (MEG), where the 625 

equipment is expensive and requires a magnetically shielded room (as fMRI), have 626 

limited potential transfer in out-of-lab applications. Contrarily, EEG is an affordable 627 

imaging modality with a straightforward setup which provides high temporal resolution 628 

and portability. However, the inconvenience of using EEG is a low spatial resolution 629 
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and a low SNR. Despite this, decoders have been commonly employed in EEG-BCI 630 

design employing parieto-occipital power changes in ⍺-band activity to predict covert 631 

visuospatial attention tasks (Tonin et al. 2013; Treder et al. 2011; van Gerven et al., 632 

2009). The integrated approach between frontal and parieto-occipital attentional 633 

decoding based on ⍺-synchronisation, however, has not been attempted. Here, we 634 

found that cue-locked synchronisation enclosed in the FPN ⍺-band is insufficient to 635 

determine the attentional location at EEG single trial level. This may be due to an 636 

inherent lack of connectivity in the cue-to-target interval, or else more likely, the poor 637 

sensitivity of the EEG to register synchronisation patterns.  638 

Another potential reason to explain the failed classification of cue-locked FPN 639 

connectivity at single-trial level may be the change in PLV calculation from trial-640 

average to single-trial. Standard cognitive research employs multiple trials to estimate 641 

consistent findings on electrophysiological markers (M/EEG). Instead, BCIs need 642 

robust and accurate estimates in a single-trial fashion and thus require a trade-off 643 

between spatial (i.e., single-channel decoding is preferred) and temporal resolution. 644 

PLV is a measure of consistency across multiple trials and cannot serve as a single-645 

trial control signal. Therefore, we computed PLV across time points within the same 646 

trial. This new measure is also referred to in the literature as the inter-site phase 647 

clustering (ISPC) and may represent a different underlying process than that captured 648 

by classic PLV (Cohen 2015). This prompts the question of whether long-range ⍺-649 

synchronisation is incapable of decoding the attended location, or rather the single-650 

trial nature of IPSC over time is responsible for this.  651 

In sum, long-range ⍺-synchronisation within the FPN estimated with EEG may not 652 

serve as a control signal for BCI. This limitation may be due to incomplete information 653 
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on neural correlates due to the lack of cross-frequency analysis or the computational 654 

techniques surrounding ISPC over time. 655 

CONCLUSION 656 

We found direction-specific contralateral patterns of upper ⍺-synchronisation (i.e., 657 

PLV) within the FPN following target appearance in a covert visuospatial task. This 658 

finding, however, did not extend to pre-target or cue-to-target time windows. The 659 

modulatory role of ⍺-synchronisation in anticipatory attention through frontal, parietal 660 

and occipital regions suggests that PLV may not constitute a reliable metric for this 661 

top-down visual processing. Furthermore, chance-level classification resulting from 662 

using this metric in an SVM indicates that long-range ⍺-synchronisation computed with 663 

EEG may not be a suitable control signal for BCI.   664 
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LEGENDS 948 

Figure 1. Experimental design and response rates. (A) Schematic trial 949 

representation. A black fixation cross in the middle of the screen and two squares 950 

(to-be-attended locations) at the bottom left, and bottom right positions were displayed 951 

continuously. At the beginning of each trial, participants were instructed to gaze at the 952 

fixation cross. After 200 ms (fixation period), an auditory cue appeared for 100 ms (cue 953 

period) indicating which hemifields participants must attend (75% validity). After a 954 

jittered interstimulus interval of 2000 ± 500 ms, a target appeared at the targeted 955 

location during 50 ms (target period). Participants had to report first if they had seen 956 

the target (detection task), and after 1000 ms, the location of the target (left/right 957 

discrimination task) during 1500 ms. An intertrial interval (ITI) of 1000 ms followed, 958 

and a new trial began (Adapted from Torralba et al. 2016). (B) Response rates for 959 

detected and discriminated trials (HITS) related to attended and unattended 960 

trials. Black lines over violin plots represent the mean value. Both overall performance 961 

(top) and right/left hemifields (bottom) are shown. White dots indicate individual values 962 

(adapted from Torralba et al. 2016).  963 

Figure 2. Target-locked results. (A) Target-locked results of the phase-coupling 964 

for attended left (light blue) and attended right (dark blue) in FM-PL and FM-PR 965 

networks. The lower panels depict the cross-trial average time course (± shaded 966 

SEM) of PLV in both conditions (attended left and attended right). Upper panels 967 

present the binned violin plots (mean and median) of the pre-target window (-200 to 0 968 

ms) and the post-target window (200 to 400 ms); *p < 0.05. (B) Target-locked results 969 

collapsed as either ipsilateral (FM-PL network and attended left; FM-PR and 970 

attended right) or contralateral (FM-PR network and attended left; FM-PL and 971 
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attended right). The lower panel shows the cross-trial average time course (± shaded 972 

SEM) of PLV in ipsilateral (light grey) and contralateral (dark grey) conditions. The 973 

upper panel exhibits the distribution of individual PLV with a violin plot, superimposed 974 

by the mean and the contra- to ipsilateral differences between individual PLV; *p < 975 

0.05. Individual results with PLV are found in Figure 2-1, and thoes with PLM are found 976 

in Figure 2-2. 977 

Figure 3. Cue-locked results. (A) Group-level results of upper-alpha PLV. Upper 978 

panel shows phase coupling for ipsilateral (light grey) and contralateral (dark grey) 979 

sides in time-windows of 200 ms from the cue-locked interval (500 ms to 1500 ms after 980 

cue presentation). Lower panel shows mean and standard error of the mean (SEM) of 981 

the PLV values. Individual results are shown in Figure 3-1. (B) Exploratory analysis 982 

of PLV differences. Group-level temporal evolution of the z-scored difference 983 

between contralateral and ipsilateral PLV for each frequency band (2.4 - 42 Hz with 984 

16 logarithmic steps). Z-score values range from -0.03 to 0.03. Individual results are 985 

shown in Figure 3-2. 986 

Figure 4. Classification outcomes. (A) Cross-time PLV reality check. Replication 987 

of results from Fig. 2 calculating PLV across time points rather than across trials. 988 

Individual results are shown in Figure 4-1. (B) Optimisation results of gamma and 989 

margin parameters of the Gaussian kernel SVM. Ten-fold validation accuracies with 990 

varying margin values (x-axis) and gamma values (y-axis). Inset shows a detailed view 991 

of the z-axis. (C) Confusion matrix of the classification outcomes for one 992 

participant. Y-axis represents ground truth labels (attended right or attended left) and 993 

x-axis represents the classifier’s outcomes. Percentages represent the fraction of 994 

correctly classified trials of each condition (i.e., each row sums to 100%). Under the 995 
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percentage is the gross number of classified trials. Results with additional classifiers 996 

such as sLDA and RDMD are shown in Figure 4-2.  997 

Figure 5. Lateralisation index reality check. (A) Averaged lateralization index for 998 

attended left (light blue) and attended right (dark blue; *p < 0.05; **p < 0.01). 999 

White dots denote individual scores, and horizontal line indicates the group mean. (B) 1000 

Lateralisation index (mean ± SEM) over time. Solid lines and shaded areas 1001 

represent mean and standard error of the mean (SEM) interval, respectively. Dots on 1002 

in the x-axis denote the significant difference over time between attended left (light 1003 

blue) and attended right (dark blue) via cluster-based permutation test. Individual 1004 

results are shown in Figure 5-1. (C-D) Lateralisation indexes and the difference of 1005 

contra- to ipsilateral PLV for attended left (light blue) and attended right (dark 1006 

blue) at the pre-target window (C) and the post-target window (D). At the pre-1007 

target the correlations for attended right (r = -0.33, p > 0.05) and attended left (r = -1008 

0.19, p > 0.05) did not reach significance and neither did the correlations for attended 1009 

right (r = -0.38, p > 0.05) and attended left r = -0.46, p > 0.05) at the post-target window. 1010 

Crosses denote participants with a significant effect in PLV contra-ipsi differences at 1011 

the pre-target window (-200 to 0 ms; P05) and the post-target window (200 to 400 ms; 1012 

P02 and P07). Dots represent the rest of the participants.  1013 
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EXTENDED FIGURE LEGENDS 1014 

Figure 2-1. Individual results of target-locked PLV index. Violin plots represent the 1015 

phase locking values (PLV) averaged over the pre-target (-200 to 0 ms, t = 0 as target 1016 

appearance) and post-target time window (200 to 400 ms). Ipsilateral (FM-PL network 1017 

and attended left; FM-PR and attended right) or contralateral (FM-PR network and 1018 

attended left; FM-PL and attended right) scenarios are exhibited as either light grey or 1019 

dark grey, respectively. *p < 0.05, **p < 0.01, ***p < 0.001.  1020 

Figure 2-2. Individual results of target-locked PLM index. Violin plots represent the 1021 

phase linearity measurement (PLM) over the pre-target (-200 to 0 ms, t = 0 as target 1022 

appearance) and post-target time window (200 to 400 ms). Ipsilateral (FM-PL network 1023 

and attended left; FM-PR and attended right) or contralateral (FM-PR network and 1024 

attended left; FM-PL and attended right) scenarios are exhibited as either light grey or 1025 

dark grey, respectively. *p < 0.05, **p < 0.01, ***p < 0.001.  1026 

Figure 3-1. Individual results of upper-alpha cue-locked PLV analysis. Violin plots 1027 

represent the phase locking values (PLV) averaged over the five time windows (500 1028 

to 700, 700 to 900, 1100 to 1300, and 1300 to 1500 ms; t = 0 as cue appearance). 1029 

Ipsilateral or contralateral scenarios are exhibited as either light grey or dark grey, 1030 

respectively. *p < 0.05, **p < 0.01. 1031 

Figure 3-2. Individual results of cue-locked exploratory PLV analysis. Differences 1032 

of contra- to ipsilateral PLV are represented over frequencies (2.4 – 42 Hz in 16 1033 

logarithmic steps) as a percentage of change regarding the cross-frequency mean of 1034 

each individual.   1035 



  42 

Figure 4-1. Individual results of target-locked cross-time PLV. Violin plots 1036 

represent the phase locking values (PLV) obtained by calculating PLV as consistency 1037 

throughout the pre-target (-200 to 0 ms) and post-target (200 to 400 ms) time windows. 1038 

Ipsilateral or contralateral scenarios are exhibited as either light grey or dark grey, 1039 

respectively.  1040 

Fig 4-2. Additional classifier analysis. (A) Shrinkage linear discriminant analysis. 1041 

The leftmost panel reveals how classification error is not modulated by gamma 1042 

parameter of number of predictors. The rightmost panel presents the confusion matrix. 1043 

(B) Riemannian minimum distance to the mean classification results.  1044 

Figure 5-1. Individual results of lateralisation index. Violin plots represent the 1045 

averaged lateralised index for attended left (light blue) and attended right trials (dark 1046 

blue) over the cue-locked time window. Shaded plots represent lateralisation over time 1047 

(mean ± SEM). Dots on in the x-axis denote the significant differences over time 1048 

between attended left and attended right via cluster-based permutation test. *p < 0.05, 1049 

**p < 0.01, ***p < 0.001.  1050 
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