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Abstract

Midbrain dopaminergic (DAergic) neurons of the ventral tegmental area (VTA) are engaged by
rewarding stimuli and encode reward prediction error to update goal-directed learning. However, recent
data indicate VTA DAergic neurons are functionally heterogeneous with emerging roles in aversive
signaling, salience, and novelty, based in part on anatomical location and projection, highlighting a need
to functionally characterize the repertoire of VTA DAergic efferents in motivated behavior. Previous
work identifying a mesointerpeduncular circuit consisting of VTA DAergic neurons projecting to the
interpeduncular nucleus (IPN), a midbrain area implicated in aversion, anxiety-like behavior, and
familiarity, has recently come into question. To verify the existence of this circuit, we combined
presynaptic targeted and retrograde viral tracing in the dopamine transporter (DAT)-Cre mouse line.
Consistent with previous reports, synaptic tracing revealed axon terminals from the VTA innervate the
caudal IPN; whereas, retrograde tracing revealed DAergic VTA neurons, predominantly in the paranigral
region, project to the nucleus accumbens shell, as well as the IPN. To test if functional DAergic
neurotransmission exist in the IPN we expressed the genetically encoded DA sensor, dLight 1.2, in the
IPN of C57B1/6J mice and measured IPN DA signals in vivo during social and anxiety-like behavior using
fiber photometry. We observed an increase in IPN DA signal during social investigation of a novel but
not familiar conspecific and during exploration of the anxiogenic open arm of the elevated plus maze.
Together, these data confirm VTA DAergic neuron projections to the IPN and implicate this circuit in

encoding perceived motivated exploration.

Significance Statement
Ventral tegmental area (VTA) dopamine (DA) neurons respond to reward but can also be engaged by
aversive stimuli highlighting the need to functionally characterize VTA projections to understand how

DA signaling underlies motivated behavior. Previous studies identified VTA DA neurons that project to
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the interpeduncular nucleus (IPN) where they modulate anxiety and novelty preference. In mice, the
existence of IPN-projecting VTA DA neurons was confirmed using viral tracing. Expressing a genetically
encoded DA sensor in the IPN and monitoring DA revealed that IPN DA is increased in response to novel
and anxiogenic stimuli. These data verify that a small population of DA neurons in the VTA project to the

IPN where they are engaged during motivated exploration.

Introduction

The modulatory neurotransmitter dopamine (DA) plays critical roles in reward, learning, motivation and
action selection (Arber and Costa, 2022; Berridge and Robinson, 1998; Floresco, 2015; Schultz et al.,
1997). Despite decades of intense research, the precise regulation, and the circuitry architecture of
DAergic neurotransmission still remains unclear (Berke, 2018). Growing evidence demonstrate that
midbrain DAergic systems are integrated by a spectrum of molecularly, anatomically and functionally
distinct neuron subtypes. In addition, single-cell gene expression profiling (Phillips et al., 2022; Poulin et
al., 2020; Tiklova et al., 2019), together with projection specificity functional mapping, support the
hypothesis that heterogeneous DA neuronal clusters can influence individual behavioral readouts
(Lammel et al., 2014; Morales and Margolis, 2017; Poulin et al., 2018).

Midbrain DA neurons in the ventral tegmental area (VTA) respond to reward (Mirenowicz and Schultz,
1996), reward-predictive cues (Flagel et al., 2010), associative learning (Saunders et al., 2018), as well as
salient stimuli, such as novel social investigations (Gunaydin et al., 2014; Solié et al., 2021). In addition,
some VTA DA neurons are engaged by aversive stimuli (Matsumoto and Hikosaka, 2009) or during
anxiety and fear-related behaviors (Zweifel et al., 2011). Most VTA DA neurons send abundant
projection-specific outputs to the ventral striatum nucleus accumbens region (NAc), where they regulate
reward-related and aversive processing (de Jong et al., 2019; Lammel et al., 2012), encode saliency (Kutlu

et al., 2021) or promote social behaviors (Gunaydin et al., 2014), but whether the same neurons send
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functional projections to additional areas and how they control emotional and motivational behaviors is
not fully understood.

Medial and ventral adjacent to the VTA resides the interpeduncular nucleus (IPN) of the midbrain. The
IPN receives excitatory inputs from the epithalamic medial habenula (mHb) and sends efferent projections
to midbrain and hindbrain structures including the raphe, tegmentum and pontine nucleus (Groenewegen
et al., 1986; Lima et al., 2017). IPN neurons are predominantly GABAergic, although IPN glutamatergic
and serotonergic neurons have also been reported (Quina et al., 2017; Sherafat et al., 2020). Anatomically,
the IPN has been subdivided into 3 unpaired and 4 paired subnuclei: the median, unpaired subnuclei
include the apical (IPA), rostral (IPR) and central (IPC) nuclei, whereas the paired subnuclei involve the
dorsolateral (IPDL), dorsomedial (IPDM), lateral (IPL) and intermediate (IPI) subnuclei (Hemmendinger
and Moore, 1984). The cytoarchitecture, molecular profiling and functional connectivity of distinct IPN
neuronal clusters is largely unknown.

Increasing attention has focused on the mHb-IPN axis over the last two decades, as it highly expresses
a unique combination of nicotinic acetylcholine receptor (nAChR) subunits, a5, o3 and B4, encoded
within the CHRNAS-A3-B4 gene cluster (Improgo et al., 2010), extensively associated with nicotine
dependence in human genetic studies (Berrettini et al., 2008; Bierut et al., 2008). Numerous investigations
in rodents have corroborated the role of the mHb-IPN circuit as key regulator of nicotine intake (Fowler
et al., 2011; Frahm et al., 2011) and of nicotine withdrawal, including both physical and affective aspects
(Antolin-Fontes et al., 2015; Casserly et al., 2020; Goérlich et al., 2013; Klenowski et al., 2021; Salas et
al., 2009; Zhao-Shea et al., 2015, 2013). Emerging evidence further implicates this axis in regulating fear-
related memories as well as baseline anxiety-like behaviors (Molas et al., 2017a; Seigneur et al., 2018;
Soria-Gomez et al., 2015; Yamaguchi et al., 2013; J. Zhang et al., 2016).

Recent data described a mesointerpeduncular pathway consisting of VTA DAergic neurons that

innervate the IPN (Zhao-Shea et al., 2015), a circuit that mediates anxiety-like behavior through unique
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IPN microcircuitry (DeGroot et al., 2020) and that controls the motivational component of familiar social
investigations (Molas et al., 2017b). Such crosstalk between two adjacent midbrain structures with
apparent opposing roles in regulating behavior (Wills et al., 2022) could have important implications for
balancing motivational and affective behaviors. However, a recent study excluded the existence of an
anatomic connection from the VTA to the IPN (Nasirova et al., 2021). Thus, a comprehensive analysis
clarifying VTA DAergic neuron connections to the IPN and elucidating internal signals that trigger DA
release in this brain area, would provide valuable insight into VTA DA neuron architecture, as well as

intrinsic midbrain DA circuitry function.
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Materials and Methods

Animals

All animal experiments were conducted in accordance with the guidelines for care and use of laboratory
animals provided by the National Research Council, and with approved animal protocols from the
Institutional Animal Care and Use Committee of the Institution. C57BL/6J (Stock #000664,

https://www.jax.org/strain/000664) and DAT-Cre (Stock #006660, https://www.jax.org/strain/006660)

mice were obtained from the Jackson Laboratory and bred in the institution animal facility. Cre lines were
crossed with C57BL/6J mice and only heterozygous animals were used for the experiments. Mice of both
sexes were used in all experiments. For social experiments, juvenile stimuli always consisted of C57B1/6J
mice (4-7 weeks old). Mice were group housed with a maximum of five per cage and were kept on a
standard 12 h light/dark cycle (light on at 7 A.M.) with ad libitum access to food and water. Following
viral brain injections and recovery overnight, mice for behavior experiments were transferred to the
reverse light/dark cycle room (light on at 7 P.M.) for 3 weeks prior to the fiber brain implantations or
further experiments. Mice were single house at least one week before behavior testing which were

conducted during the dark cycle (8 A.M. to 5 P.M.).

Viral preparations

Biosensors, optogenetic and control plasmids packaged into viral particles were purchased from Addgene.
For tracing experiments we used pAAV.hSyn.mCherry (#114472-AAV2, 2.6 x 10 GC/ml,

https://www.addgene.org/114472/), pAAV.hSyn.DIO.EGFP (#50457-AAVrg, 1.4 x 10 GC/ml,

https://www.addgene.org/50457/), pAAV-hSyn-Flex-mGFP-2A-Synaptophysin-mRuby (#71760-AAV1,

7.0 x 10" GC/ml, https:/www.addgene.org/71760/) and pAAV-hSynapsinl-Flex-axon-GCaMP6s

(#112010-AAVS5, 2.2 x 10" GC/ml, https://www.addgene.org/112010/). For fiber photometry

experiments we used pAAV.hSyn.dLightl.2  (#111068-AAVS, 87 x 102 GC/ml,
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https://www.addgene.org/111068/). Viral injections were performed on 6 weeks old mice and between 4

to 6 weeks were allowed for transgene expression.

Stereotaxic surgeries

Briefly, mice (6 weeks old) were deeply anaesthetized with a mixture of 100 mg/kg ketamine and 10
mg/kg xylazine (VEDCO) by intraperitoneal (IP) injection. Ophthalmic ointment was applied to maintain
eye lubrication. The skin of skull was shaved and disinfected with iodine. Mice were then placed on a
heating pad and in a stereotaxic frame (Stoelting Co.) and the skull was exposed by making a small
incision with a scalpel blade. Using bregma and lambda as landmarks, the skull was leveled along the
coronal and sagittal planes. A 0.4-mm drill was used for craniotomies at the target Bregma coordinates.
Microinjections were made by using a gas-tight 33G Hamilton 10 pl neurosyringe (1701RN, Hamilton)
and a microsyringe pump (Stoelting Co.). The following coordinates (in mm, Bregma anterioposterior
(AP), mediolateral (ML) and dorsoventral (DV)) were used for nucleus accumbens, AP 1.0, ML +/- 0.5,
DV -4.0; VTA, AP -3.51, ML +/- 0.2, DV -4.2; IPN, AP -3.51, ML -1, DV -4.81 and 12° angle. Viral
volumes for injections were 300 nl, delivered at a constant flow rate of 30 nl/min. After injection, the
needle was left unmoved for 10 min before being slowly retracted. The incision was then closed and held

together with Vetbond.

After 3 weeks recovery from virus injection, mice underwent surgery as described above for implantation
of optic fibers. Optic fiber (200 um core diameter; 0.48 N.A., Doric Lenses) was placed targeting the IPN
(AP -3.8, ML -1, DV -4.61, 12.5°) and was held in place with adhesive luting cement (C&B metabond,
Parkell Inc.) followed by dental cement (Cerebond, PlasticsOne). Mice were allowed to recover for 5 to 7
days in the reverse light/dark cycle room before behavior tests. Injection sites and viral expression were
confirmed for all animals by experimenters blinded to behavioral outcome as previously described (Molas
et al., 2017b). Animals showing no viral or off-target site viral expression or incorrect optic fiber

placement (< 10%) were excluded from analysis.
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Fiber photometry and data analysis

Florescent signals from biosensors were recorded with a Doric Instruments Fiber Photometry System. An
LED driver was used to deliver excitation light from LEDs at 465 nm (~8.5 mW output) and at 405 nm
(~5 mW output), which was used as an isosbestic wavelength for the indicator (Doric Instruments). The
light was reflected into a 200 um 0.48 N.A. optic fiber patch cord via the Dual Fluorescence Minicube
(Doric Instruments). Emissions were detected with a femtowatt photoreceiver (Model 2151, Newport) and
were amplified by transimpedance amplification to give an output voltage readout. Sampling (12 kHz)
and lock-in demodulation of the fluorescence signals were controlled by Doric Neuroscience Studio
software with a decimation factor of 50. A Doric behavior camera was connected to the Doric
Neuroscience Studio software using USB 3.0 Vision interface to synchronize the photometry recordings
with time-locked behavioral tracking systems. All mice were habituated to the patch cord plugged to the
optic fiber implant for 10 min in their home cages prior to the start of the experiment. For social novelty
tests, recordings began with the animal in the home cage for 1 min and then was placed by the
experimenter to the center of the behavioral apparatus. Behavioral events were tallied from the videos in
a blinded fashion and analysis was done using the time-locked photometry recording.

Fiber photometry data analysis was performed using custom-written Matlab scripts. A lowpass filter (3Hz)
was applied to the demodulated fluorescence signals before the 405 nm channel was scaled to the 465 nm
by applying a least mean squares linear regression. Scaled signals were used to calculate the AF/Fo where
AF/Fo = (465 nm signal — fitted 405 nm signal)/fitted 405 nm signal. Z-scores were calculated using as
baseline the average AF/Fo values from the -1.0 s prior to the onset of each behavioral event (considered
as time zero, t=0). For random sampling, two sets of 10 start timestamps were randomly generated, one
set within the first 5 to 149.99s and the other within 150-294.99 s of the 5 min recording trace. For the 20
random timestamps, AF/Fo were extracted from -1 to 3 s and the z-scores of each event estimated using

as baseline the -1.0 s prior to the timestamp.
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Behavioral assays

Animals were acclimated to the testing room for 30 min before any experimental assay, and all testing

was performed under dim red-light conditions.

Social behavior

Social behavior experiments were performed in wild-type C57BL/6J mice expressing the dLightl.2
biosensor in the IPN. Both in male and female mice were used, which interacted with a same-sex
C57BL/6J juvenile conspecific. Animals were tested in a plexiglass apparatus (42 x 64 x 30 cm) containing
two plastic grid cylinders (25 cm x 10 cm diameter) located at opposite corners of a rectangular maze.
Subject mice were first habituated to the apparatus and the empty cylinders for a 5-min period. Following
habituation, a juvenile unfamiliar C57BL/6J conspecific (4-7 weeks of age) was placed inside one of the
two cylinders (counterbalanced), reducing social investigations led by the subject animals. The subject
mouse was then positioned in the central zone and allowed to freely explore the social and non-social
cylinders for 5 min. This testing phase was repeated 24h, on day 2, using the same juvenile conspecific
located in the same compartment which became familiar. The apparatus and cylinders were cleaned with
Micro-90 solution (International Products Corporation) to eliminate olfactory traces after each session.
All sessions were video recorded and synchronized to activity dynamics. Exploration of the social and
non-social cylinders in videos of the trials were labeled frame by frame by experimenters blind to group
conditions. Onset of each behavioral exploratory event (considered as t=0) was defined whenever the
subject mouse directed its nose towards the cylinders at a distance < 2 cm and initiated a sniffing

investigation. Sitting or resting next to the cylinder or objects was not considered exploration.

Elevated plus maze

The elevated plus maze (EPM) apparatus consisted of a central junction (5 x 5 cm), four arms elevated 45
cm above the floor with each arm positioned at 90° relative to the adjacent arms. Two closed-arms were

enclosed by high walls (30 x 5 X 15 cm) and the open-arms were exposed (30 x 5 x 0.25 cm). A 60W red
9
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fluorescent light was positioned 100 cm above the maze and was used as illumination source. Both male
and female C57BL/6J mice expressing the DA biosensor dLightl.2 in the IPN were used. The optic fiber
implant was connected to the recording patch cord, and then mice were placed on the junction part of the
maze facing one of the open arms. All mice were given 5 min of free exploration while their behavior was
video-recorded and synchronized to the dLightl.2 signals via the Doric instruments fiber photometry

system, as described above.

Immunostaining and microscopy

Mice were euthanized by i.p injection of sodium pentobarbital (200 mg/kg) and transcardially perfused
with ice cold 0.1 M phosphate buffer saline (PBS, pH 7.4) followed by 10 ml of cold 4% (W/V)
paraformaldehyde (PFA) in 0.1 M PBS. Brains were post-fixed in 4% PFA for 2 h and then submerged in
30% sucrose. Brains were sliced to coronal sections (25 um) by using a freezing microtome (HM430,
Thermo Fisher Scientific). For virus expression and fiber implants verification, after washes in 0.1 M
PBS, sections were mounted, air-dried and coverslipped with Vectashield mounting medium (Vector
Laboratories). Slices were imaged using a fluorescence microscope (Zeiss, Carl Zeiss Microlmmagine,
Inc.) connected to computer-associated image analyzer software (Axiovision Rel., 4.6.1). For
immunohistochemical staining, brain sections were permeabilized with 0.2% Triton X-100 in 0.1 M PBS
for 5 min, blocked with 2% BSA in 0.1 M PBS for 30 min and then incubated overnight with the
corresponding primary antibodies in 2% BSA at 4°C. Primary antibodies used: mouse anti-TH 1:500

(Millipore, MAB318, https://www.emdmillipore.com/US/en/product/Anti-Tyrosine-Hydroxylase-

Antibody-clone-LNC1.MM NF-MAB318), guinea pig anti-synaptophysin 1:300 (alomone labs, AGP-

144, https://www.alomone.com/p/guinea-pig-anti-synaptophysin-antibody/ANR-013-GP). Slices were

subsequently washed in 0.1 M PBS, blocked with 2% donkey (or goat) serum (Sigma) for 30 min and then
incubated in secondary antibodies for 1 h (1:800; Life Technologies; donkey anti-mouse 647 (A31571),

goat anti-guinea pig 594 (A11076)). After washes in 0.1 M PBS, sections were mounted, air-dried and

10
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coverslipped with Vectashield medium with DAPI (Vector Laboratories). Images were obtained by a Zeiss
LSM 700 confocal microscope at 10x or at 10x with a 1.5 zoom. Images were analyzed using ImagelJ Fiji
to create a zoomed-in inset (the red line square on the images, with a 1.5 or 2 zoom factor). The ImageJ
JAcoP method was used for co-localization analysis between VTAPA->IPN fibers expressing
AxonGCaMP and synaptophysin staining. Briefly, each image threshold was set automatically for analysis
before Manders’ coefficient was applied to obtain the fraction of synaptophysin (red) overlapping with
VTAPA>IPN terminals (green) and vice versa. For quantification of fluorescently labeled axons from
VTAPA neurons innervating the IPN, the Digital Enhancement of Fibers with Noise Elimination
(DEFINE) method was applied (Powell et al, 2019), available for download

here: https://figshare.com/s/1be5ale77c4d4431769a. Axons were quantified in confocal images that

were not processed through the clean images function, but each input image was a single—channel
maximum intensity projection. Quantification was performed in ROIs (0.3 mm x 0.4 mm) randomly

allocated within the anterior (Bregma -3.4mm) and posterior (Bregma -3.8mm) IPN.

Statistical analysis

Statistical analyses for fiber photometry were done using parametric tests on z-scored data after testing
for normality. One-way or two-way repeated measures (RM) ANOVA with Dunnett’s multiple
comparisons tests or Bonferroni post-hoc tests were conducted for the analyses involving the comparison
of group means as indicated. Z-scores are presented as mean = SEM of all events for transitions between
open (included junction) and closed arms and for social approach behaviors. Comparisons of z-scores
were made using the calculated average for each animal. All analyses were performed using Prism 9

(Graphpad, San Diego, CA). Statistical significance was accepted at P <0.05.

Code Accessibility

11
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Results

We used a genetic strategy to target putative DA neuron subtypes and rigorously investigate DAergic
projections from the VTA to the neighboring IPN. To this aim, we specifically selected a knock-in genetic
mouse line that expresses Cre recombinase under the transcriptional control of the endogenous dopamine
transporter (DAT) promoter. In this mouse line, Cre recombinase expression is driven from the 3’
untranslated region (3 UTR) of the endogenous DAT gene by means of an internal ribosome entry
sequence (IRES), to reduce interference with DAT function (Bidckman et al., 2006). Some neurons in the
IPN express tyrosine hydroxylase (Th) mRNA, which can lead to recombination in Th-IRES-Cre mice,
although these neurons have low/undetectable TH protein in the adult brain (Poulin et al., 2018). These
Th™ IPN neurons are not related to midbrain DA neurons, as they are not derived from the midbrain floor
plane, and they lack the expression of typical DAergic neuronal markers such as DAT, NURR1, FOXA2
or PITX3 (Poulin et al., 2018), thereby using DAT-Cre mice restricts and minimizes expression to
midbrain DA neurons. Previous work expressed a Cre-dependent virus in the VTA of DAT-Cre animals
and detected neuronal projections innervating mainly the caudal part of the IPN (cIPN) (DeGroot et al.,
2020; Molas et al., 2017b). To verify that VTAPA->IPN projections are indeed axonal terminals and not
simply DA dendritic elements extending into the IPN, we injected AAVs containing the
hSyn.Flex. mGFP.2A synaptophysin.mRuby construct into the VTA of DAT-Cre mice (Fig. 1A).
Following Cre recombination, synaptophysin fused to the mRuby red fluorophore is selectively
transported into the axonal compartments of the transfected neurons (Fig. 1A)(S. Zhang et al., 2016). TH
immunostaining demonstrated efficient recombination restricted to DA neurons in the midbrain (Fig. 1B).
Furthermore, via circuit-mapping, abundant axon terminals were detected in the nucleus accumbens
(NAc) region, the principal output target of VTAP?A neurons (Fig. 1C). These VTAPA->NAc axon
terminals intensely expressed synaptophysin-mRuby fused protein (Fig. 1C), altogether validating the

viral-mediated genetic strategy. To delineate the VTAPA->IPN circuit, we used a group of 6 mice, with
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comparable results. All injected animals reliably exhibited VTAP* synaptophysin-mRuby axon terminals
innervating the IPR region of the cIPN (Fig. 1 D). Additional VTAPA axonal varicosities were also
detected targeting the cIPN IPDM/IPDL subregion (Fig. 1D), consistent with previous data (DeGroot et
al., 2020; Molas et al., 2017b).

To reassure that VTA DA neurons send neuronal projections innervating the neighboring IPN and that
these are active presynaptic axons, DAT-Cre mice received an injection of Cre-dependent AxonGCaMP
in the VTA expressed via AAV5-mediated gene delivery (Fig. 2A). This genetically encoded calcium
indicator is uniformly enriched in axons, allowing for structure-specific labeling of presynaptic terminals
(Broussard et al., 2018). Similarly, as described above, presynaptic terminals from VTAP neuronal inputs
were observed in the IPR and IPDM regions of the cIPN (Fig. 2B-D). Moreover, immunostaining against
synaptophysin protein revealed robust co-localization between the GFP+ (AxonGCaMP) and
synaptophysin (Fig. 2B-D), confirming active presynaptic structures.

Distinct VTAPA projection populations regulate reward associations and motivation via specific NAc
inputs (Heymann et al., 2020). To elucidate the projection-specificity of VTAPA that innervate the cIPN,
DAT-Cre mice received a co-injection of AAV2-hsyn-mCherry (localization marker) together with
AAVrg-hsyn-DIO-eGFP into the NAc region (Fig. 3A). Imaging of the target injection site confirmed
viral-mediated gene delivery restricted mainly in the shell area of the NAc (Fig. 3B). In addition, to verify
the retro-labeled neurons detected in the VTA were positive for DAergic markers, brain slices of the
injected animals were immuno-stained against TH protein. All the experimental animals (n = 6 mice)
exhibited abundant terminal projections from retro-labeled VTA->NAc projecting neurons that innervated
the IPR region of the cIPN (Fig. 3C). The cell bodies from VTA->IPN projecting neurons mostly localized
in the paranigral (PN) area of the VTA (Fig. 3C) and were indeed DAergic, as shown by co-localization
with TH staining (Fig. 3C). For visualization enhancement and quantification of the fluorescently labeled

axons we used the DEFiNE method. Axonal fibers innervating the IPN from retro-labeled VTAPA->NAc
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projecting neurons were highly enriched in posterior regions of the IPN (cIPN) as compared to anterior
IPN Bregma (Fig. 4A-B). Similarly, quantification of axonal fibers originating from direct infusion of the
synaptophysin-mRuby construct in VTAP? neurons revealed increased axon terminals at more posterior
IPN Bregma compared to anterior (Fig.4C-D). Noticeably, in anterior IPN Bregma, the number of axonal
fibers was higher when VTAPA neurons were directly transfected with the synaptophysin-mRuby
construct as opposed to retro-labeled VTAPA->NAc projecting neurons (Fig. 4E). In contrast, these two
viral-mediated VTAP? neuron labeling strategies resulted in similar number of axonal fibers at posterior
IPN Bregma (Fig. 4F).

Previous work suggested that the VTAPA->IPN circuit is engaged during anxiety-like behaviors
(DeGroot et al., 2020) and when mice encounter unfamiliar conspecifics (Molas et al., 2017b). Although
DA signals have been detected in acute mouse IPN slices (DeGroot et al., 2020), the real-time dynamics
of in vivo IPN DAergic neurotransmission have never been reported. To this aim, here we recorded IPN
DA dynamics in freely behaving mice using the genetically encoded DA sensor dLightl.2 (Patriarchi et
al., 2018). Fluctuations in IPN DA signals were recorded during the 3-chamber sociability task, when
mice encountered a new juvenile conspecific (Fig. SA and Methods). On the following day, subject mice
were presented to the same juvenile conspecific in the same location, which became familiar (Fig. SA and
Methods). To this aim, we virally expressed dLight1.2 in the IPN of C57BL/6J mice, enabling ultrafast
optical DA recordings, and three weeks post-viral transduction we implanted an optic fiber targeting the
injection site (Fig. 5B). IPN DA dynamics were time-locked to when animals approached and initiated a
sniffing investigation of conspecific stimuli (Fig. SC). Demodulated fluorescence signals were obtained
from the 465 and 405 nm channels in a 5 min trial (Fig. SD). The 405 nm channel was scaled to the 465
nm by applying a least mean squares linear regression (Fig. SE). Scaled signals were used to calculate the
AF/Fo where AF/Fo = (465 nm signal — fitted 405 nm signal)/fitted 405 nm signal (Fig. 5F). On day 1 of

the sociability test, sniffing investigation of a novel conspecific significantly increased the release of DA
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in the IPN (Fig. 5G-I). However, IPN DA signals rapidly habituated on the next session, as the conspecific
became familiar (Fig. 5J-L). Random sampling IPN DA signals without being time-locked to social
sniffing investigations did not result in apparent changes in activity neither when mice interacted with a
novel conspecific (Fig. SM-0O) nor when this became familiar (Fig. SP-R).

To further investigate IPN DA signals trigger by additional behaviors, we recorded IPN DA dynamics
in mice tested in the elevated plus maze (EPM)(Fig. 6A), a well-established paradigm to measure anxiety-
like behaviors in rodents (Walf and Frye, 2007). As mice investigated the open arms of the EPM, the
release of DA in the IPN significantly increased (Fig. 6B-E). Conversely, the transition from the open to
the closed EPM compartments led to reductions in IPN DA signals (Fig. 6B, F-H). Time-locked IPN DA
signals when mice entered the open arms were higher as compared to when entering the closed arms of
the EPM or to non-time locked random sampling signals (Fig. 61-K). All the recorded animals were

verified for correct viral expression and fiber placement within the cIPN (Fig. 7).
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Discussion

DA dysfunction has been implicated in numerous brain diseases, including addiction,
depression, schizophrenia, Parkinson’s disease, and anxiety disorders (Horga and Abi-Dargham, 2019;
Nestler and Liischer, 2019; Ruitenberg et al., 2021; Taylor et al., 2021; Zalachoras et al., 2022). A
comprehensive understanding of the circuit architecture and the functional mapping of DA neurons is
imperative to gain insights into inherent regulation of DA neurotransmission in health and disease. The
present study confirms the existence of a mesointerpeduncular pathway that connects the VTA with the
IPN, thereby modulating behavioral states with implications in overall midbrain DA circuitry function.

Viral mediated circuit tracing replicated previous findings (DeGroot et al., 2020; Molas et al., 2017b;
Zhao-Shea et al., 2015), validating anatomical connections between VTA DAergic neurons and the IPN.
The current work used the DAT-Cre knock-in mouse line, in which Cre mimics the expression pattern of
the plasma membrane dopamine transporter (Béckman et al., 2006; Lammel et al., 2015) and therefore,
demonstrates higher specificity targeting putative midbrain DA neurons (Poulin et al., 2018). VTA DA
axons preferentially innervated the IPR region of the cIPN, as previously reported. These axon terminals
were detected in most injected animals across multiple experimental cohorts and appeared to be more
obvious in those mice where viral expression extended to the PN region of the VTA. In addition,
synaptically targeted markers localized in terminal projections from the VTAPA->IPN circuit, whereby
protein immunostaining revealed active presynaptic terminals rather than passing fibers. Interestingly, the
cIPN is highly enriched in neurons expressing the D1 receptor (Molas et al.,, 2017b), but also in
serotonergic cell bodies (Groenewegen et al., 1986). Serotonergic IPN neurons innervate the ventral
hippocampus (vHipp) to mediate active stress coping and natural reward (Sherafat et al., 2020).
Considering that cIPN neurons can amplify VTAP? signals through a microcircuit that spans to additional

IPN subregions (DeGroot et al., 2020), if some of these cIPN neurons comprise the serotonergic
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IPN->vHipp pathway, then the VTAP* signal would amplify to more distant regions to control
motivational and affective behaviors.

Anatomical and functional connectivity of midbrain DA neurons has been broadly investigated across
animal species (Morales and Margolis, 2017; Swanson, 1982). Numerous studies identified the source of
synaptic input to DA neurons (Beier et al., 2015; Lammel et al., 2012; Watabe-Uchida et al., 2012), as
well as output targets (Heymann et al., 2020; Lammel et al., 2011, 2008; Poulin et al., 2018). While
consistent data indicate the NAc is the major target of VTA DA neurons, additional structures such as the
amygdala, cortex, hippocampus, ventral pallidum, septum, periaqueductal grey, bed nucleus of stria
terminalis, olfactory tubercle and locus coeruleus, among others, also receive DAergic inputs from the
VTA. Noticeably, most of the circuit tracing studies traditionally focus on those regions with highest
abundance of DA terminal projections, neglecting target specific sites that receive sparse DAergic inputs.
For instance, VTA neurons send local, topographically organized axonal connections that innervate the
VTA itself (Adell and Artigas, 2004; Aransay et al., 2015; Ferreira et al., 2008), which overall have
received less attention. Of note, Aransay et al, also reported VTA innervation to the IPN, although less
frequent (Aransay et al., 2015), nevertheless supporting a direct anatomical link between the VTA and
IPN.

The anatomical location of DA neuron synaptic output can be a critical factor determining its intrinsic
properties and behavioral outcomes (de Jong et al., 2019; Lammel et al., 2011). Our data show that a
subpopulation of NAc shell-projecting VTA DA neurons in the PN region may preferentially project into
the IPN to innervate cIPN, as reported previously (DeGroot et al., 2020). Emerging evidence suggest that
subpopulations of VTA DAergic neurons can innervate more than one brain structure (Aransay et al.,
2015). Specifically, medial shell NAc-projecting DA neurons send significant collaterals outside the
striatum, including the septum and ventral pallidum, indicating that this DA subpopulation is capable of

simultaneously influencing neural activity in multiple brain regions (Beier et al., 2015). Since the same
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DA neurons presumably innervate the IPN, the data together position the IPN as an integral member within
specific VTA DAergic sub-circuitries.

Our photometry results demonstrate that innate DA signals in the IPN are triggered with motivated
exploration, when mice investigate novel conspecific individuals and when they explore the anxiogenic
arms of the EPM. These results affirm that social interactions bear rewarding aspects and recruit neural
circuits of motivation (Chevallier et al., 2012), including DAergic systems (Bariselli et al., 2018;
Gunaydin et al., 2014; Hung et al., 2017; Solié et al., 2021). Given the NAc shell represents a storage site
for social memories (Okuyama et al., 2016), one possibility could be that innate IPN signals contribute to
social novelty and familiarity responses, supporting previous findings (Molas et al., 2017b). On the other
hand, NAc shell-projecting VTA DA neurons are recruited by aversive stimuli and cues that predict them
(de Jong et al., 2019). Increased IPN DA signals with the exploration of anxiogenic environments would
result from activation of a neural network that strengthens responses to aversive stimuli to modulate
anxiety-like behavior.

A recent study excluded the existence of an anatomic connection from the VTA to the IPN (Nasirova et
al., 2021). One possible explanation for the discrepancy in the results may be that most of the viral-
mediated circuit tracing in the study of Nasirova et al., was done in a Cre mouse line that only targets IPN
neurons expressing the a5 nAChR subunit. Although neurons in the IPN are highly enriched in o5*-
nAChRs (Ables et al., 2017), some subpopulations do not express the a5-encoding gene. Thus, limiting
IPN circuit tracing to an a.5-expressing neuronal subtype does not accurately reflect total IPN connectivity.
In addition, for the viral-mediated retrograde tracing analysis, the authors selected IPN brain slices with a
maximum IPN caudal bregma coordinate of -3.6 mm according to the Paxinos atlas (Paxinos and Franklin,
2001) (Nasirova et al., 2021). As mentioned above, VTA DA neurons that project to the IPN localize more
caudal, at coordinates -3.63 to -4.03 mm from bregma, which were likely missed in the analysis.

Noticeably, previous work using rabies tracing from overall IPN neurons did detect sparse cell bodies
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localized in caudal VTA (Lima et al., 2017). Nasirova et al., utilized the Allen Connectivity Atlas to
reinforce their negative data. However, the few Allen examples performed in the Slc6a3-Cre (DAT-Cre)
line lack viral expression transfecting caudal VTA PN neurons, thereby precluding the detection of any
putative VTAP innervation to the IPN. Additionally, Nasirova et al. included examples of VTA Cre-
mediated anterograde tracing in DAT-Cre mice, but, for this experiment, the authors used a non-validated
Cre-dependent synaptically-targeted GFP marker, which presented strong labelling of cell bodies in the
medial mamillary nucleus and also the IPN itself (Nasirova et al., 2021), two brain regions lacking DA
neurons, thus raising questions regarding the specificity of the virus and therefore the validity of the
results. Surprisingly, the paper of Nasirova et al (2021) failed to cite, consider, or discuss DeGroot et al
(2020), which used a multidisciplinary approach and specifically demonstrated: 1) DA detection in IPN
slices using a genetically encoded DA sensor, 2) optogenetic activation of VTA DA IPN inputs elicits a
post-synaptic response that is blocked by a D1 receptor antagonist, 3) retrograde Cre-dependent AAV-
eGFP injection into the medial nucleus accumbens shell labels VTA neurons that clearly project into the
IPN of DAT-Cre mice (a result that was repeated here with the addition of TH staining to label DAergic
neurons), and 4) optogenetic activation or silencing the DAergic IPN input decreases and increases
anxiety-like behavior, respectively.

In summary, the present study was able to confirm the existence of a mesointerpeduncular pathway that
connects the VT A with the IPN, replicating previous findings (Aransay et al., 2015; DeGroot et al., 2020;
Molas et al., 2017b; Zhao-Shea et al., 2015). These results may significantly influence the prevailing
models of intrinsic midbrain DA circuitry as well as of IPN function. Considering that VTA DAergic
neurons also send projections to the mHb (Beier et al., 2015; Phillipson and Pycock, 1982), the data
together suggests a complex direct dopaminergic modulation of the habenulointerpeduncular tract that
may have strong impact on reward-related, aversive/affective motivated behaviors. Finally, beyond the

VTA-IPN axis, and bearing in mind that activation of small subsets of neuronal ensembles can lead to
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selective widespread activation of neural networks with concomitant behavioral outcome (Dalgleish et al.,
2020; Marshel et al., 2019), the present work emphasizes the need of investigating sparse, functionally
relevant neglected circuits that may serve as signal amplification to computationally process motivational

information.

Figure Legends

Fig 1. VTA DA neurons send axonal projections to the IPN

A, Schematics depicting Cre-dependent recombination of the construct pAAV-hsyn-Flex-mGFP-2A-
synaptophysin-mRuby in DAT-Cre mice and the viral injection strategy used. Dendritic arbors from a
Cre™ transfected neuron display exclusive mGFP green fluorescence, whereas mRuby red fluorescence
predominantly localizes in axon terminals. B, Top, representative image of viral injection in the VTA of
DAT-Cre mice, showing mGFP (green) and mRuby (red) expression in DA neurons immunolabeled with
TH staining (magenta). Nuclei are counterstained with DAPI (blue). Bottom, magnified view of the inset
region from the top image. White arrows show mGFP in dendritic arborizations and mRuby in axonal
projections from VTAPA transfected neurons (Scale bars 100 pm). C, Representative image showing
mGFP and mRuby expression in efferents innervating the NAc from VTAP transfected neurons. (Scale
bars 100 um). D, Illustrative drawing of the different interpeduncular (IP) subnuclei: apical (IPA), central
(IPC), dorsolateral (IPDL), dorsomedial (IPDM), intermediate (IPI), lateral (IPL) and rostral (IPR). IF,
interfascicular nucleus; ml, medial lemniscus; PN, paranigral nucleus; VTA, ventral tegmental area. All
cases # 1 to 6 (3 males, 3 females) show virally transfected neurons in the VTA co-labeled with TH
staining (scale bars 100 um). Inset magnified views (red squares, 2x zoom in) demonstrate VTAP* axon

terminals (mRuby-) innervating the IPR and also the IPDM/IPDL regions.
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Fig 2. DAergic projections from the VTA to the IPN are presynaptic terminals.

A, Schematic of viral-injection strategy in the VTA of DAT-Cre mice. B, Example of image showing
eGFP (AxonGCaMP) co-labeled with synaptophysin staining (red) in IPN. White arrows indicate
presynaptic puncta co-localization. Inset, magnified view of co-localization between eGFP and the
synaptophysin marker (scale bar 100 um). C, Quantification of the co-localization coefficient between
eGFP and synaptophysin staining from single plane confocal images containing the cIPN (n = 6 mice, 4
males, 2 females). D, Top, AxonGCaMP expression in the VTA of DAT-Cre mice (eGFP, green),
synaptophysin immunostaining (red) and co-localization of the two channels (merge) in brain slices
containing the cIPN (scale bar 100 um); Bottom, enlarged view of the IPR region from the top images
(gray square). White arrows denote VTAP? eGFP+ presynaptic projections in the IPR co-localized with

synaptophysin puncta (scale bar 100 pm).

Fig 3. VTAPA neurons from the PN send projections to the IPN.

A, Schematic of viral strategy used. DAT-Cre mice were injected with a viral mixture of AAV-hSyn-DIO-
eGFP (retrograde) and AAV2-hSyn-mCherry (location marker) (1:1) into the NAc. B, Representative
image showing the virus injection site targeting the NAc shell area (AcbSh) (scale bar 100 um). C,
Example of injected animals, cases # 1 to 6 (4 males, 2 females), all showing retro-labelled eGFP+ neurons
in the VTA co-labeled with TH staining. For each case: top, TH immunostaining (magenta), retro-labelled
eGFP+ neurons from the NAc (green) and overlay of the two channels (merge) in brain slices containing
the cIPN (scale bar 100 pm). Insets in the right represent a magnified view enclosing the PN and IPR in
the merged channel (red square, 2x zoom in); bottom, enlarged view of the PN and IPR region from the
top images with a right inset image of the merge channel demonstrating AcbSh-projecting neurons in the
PN region are DAergic (TH+) and also send efferents to the IPR in the cIPN (red square, 2x zoom in)

(scale bar 100 pm).
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Fig 4. DEFINE quantification of fluorescently labeled axons from VTAPA neurons to the IPN.

A, Viral injection schematics (left panel) and representative images of axonal fibers innervating the IPN
from retro-labelled eGFP+ AcbSh-projecting VTAP* neurons after DEFiNE processing at anterior (-3.40
mm) and more posterior (-3.80 mm) IPN Bregma (right panel). B, DEFINE quantification of the retro-
labelled AcbSh-VTAPA axonal fibers innervating the anterior and posterior IPN represented as total pixel
count (n = 6 mice, Unpaired two-tailed t-test (t(10) = 4.546, p = 0.0011)). C, Schematic of pAAV-hsyn-
Flex-mGFP-2A-synaptophysin-mRuby viral strategy used in DAT-Cre mice for labelling VTAP neurons
(left panel) with representative images of their axonal fibers innervating the IPN after DEFiNE processing
at anterior (-3.40 mm) and more posterior (-3.80 mm) Bregma (right panel). D, DEFiNE quantification of
the VTAPA axonal fibers innervating the anterior and posterior IPN represented as total pixel count (n =
6 mice, Unpaired two-tailed t-test (t(10) = 3.438, p = 0.0064)). E, Comparison of axonal fibers in the
anterior [IPN (Bregma -3.40 mm) quantified with the DEFiINE method when VTA DA neurons are directly
transfected with the pAAV-hsyn-Flex-mGFP-2A-synaptophysin-mRuby construct vs retro-labelled
eGFP+ AcbSh-projecting VTAPA neurons (Unpaired two-tailed t-test (t(10) = 3.114, p = 0.011)). F, Same

comparison as (E) at IPN Bregma -3.80 mm (Unpaired two-tailed t-test (t(10) = 0.184, p = 0.8577)).

Fig 5. Novel social encounters trigger IPN DA signals

A, Schematic of the experimental approach used to measure IPN DA activity during interactions with
novel and familiar social stimuli. Subject mice were exposed to the same juvenile C57BL/6 conspecific
on day 1 (novel) and 2 (familiar) while IPN DA signals were recorded using the dLight biosensor. B,
Schematic of AAV-dLight viral injection strategy in the IPN of C57BL/6 mice (left panel) and
representative pictograph of DA sensor dLightl.2 (green) expression with optic probe location targeting
the cIPN (right panel) (scale bar 100 um). C, Illustration of a social sniffing investigation. D, Example of
raw signals (Volts) corresponding to the 465 and 405 nm channels recording during a 5 min interaction

with a new social stimulus. E, The 405 nm channel is scaled to the 465 nm by applying a least mean
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squares linear regression. F, Scaled signals are used to calculate the AF/Fo where AF/Fo = (465 nm signal
— fitted 405 nm signal)/fitted 405 nm signal. G, AF/Fo values time-locked to IPN DA signals relative to
the initiation of a social sniffing investigation (red line) on Day 1, when mice interact with a novel
conspecific. H, Heatmap representations (top) and z-score values (bottom) of the time-locked IPN DA
signals relative to social novelty explorations. I, average z-score per second compared to the baseline
signal from 1s prior to the onset of each social sniffing event (pre-onset, gray). Statistical comparisons
were made using an average z-score per animal (n = 10mice, 6 males, 4 females). Significant increases in
IPN DA activity were observed 2~3 s post-onset of novel social sniffing investigations. One-way repeated
measures (RM) ANOVA (F@3,39=21.80, P<0.0001). Dunnett’s multiple comparisons test ** p<0.01, ***
p<0.001. J, AF/Fo values time-locked to IPN DA signals relative to the time initiating a social sniffing
investigation (red line) on Day 2, when mice interact with a familiar conspecific. K, Heatmap
representations (top), z-score values (bottom) of time-locked IPN DA signals relative to familiar social
explorations. L, Average z-score per second compared to the 1s baseline signal demonstrate no significant
change during familiar social sniffing investigations. One-way RM ANOVA (F3,39=0.7103, P=0.517).
M, Example of IPN DA AF/Fo values time-locked to novel social investigations as compared to AF/Fo
values obtained with random sampling across the 5 min recording session. N, Z-score values of (M). O,
Mean z-score values of the baseline and the 3 s novel social investigation event for the true signal as
compared to random sampling signal. Two-way RM ANOVA, significant time X z-score interaction
F(1.29=19.13, p=0.0001, Bonferroni post-hoc, ****p<0.0001. P, Example of IPN DA AF/Fo values time-
locked to familiar social investigations as compared to AF/Fo values obtained with random sampling
across the 5 min recording session. Q, Z-score values of (P). R, Mean z-score values of the baseline and
the 3 s familiar social investigation event for the true signal as compared to random sampling signal. All

data represent mean = SEM.
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Fig 6. IPN DA signals are engaged with exploration of anxiogenic environments

A, Schematic depicting fiber photometry recordings of IPN DA signals using the dLight1.2 biosensor in
the EPM test. B, Representative trace of IPN dLight1.2. fluorescence signals (dF/F0) when mice explored
the open arms (green) versus the closed arms (red) of the EPM. C, AF/Fo values time-locked to IPN DA
signals relative to the transition from the closed to the open arms of the EPM. D, Heatmap representations
(top) and z-score values (bottom) of time-locked IPN DA signals relative to the transition from the closed
to open arms of the EPM (gray line). E, Average z-score per second compared to the baseline signal from
1s prior to the exploration of the open arms. Statistical comparisons were made using an average z-score
per animal (n = 17 mice, 9 males, 8 females) that was calculated from all events. Significant increase in
IPN DA activity was observed 1~3s post-onset of open arm investigations. One-way RM ANOVA
(Fi.67=18.15, P<0.0001). Dunnett’s multiple comparisons test ** p<0.01, *** p<0.001. F, AF/Fo values
time-locked to IPN DA signals relative to the transition from the open to the closed arms of the EPM. G,
Heatmap representations (top) and z-score values (bottom) of time-locked IPN DA signals relative to the
transition from the open to the closed arms of the EPM (gray line). H, Average z-score per second
compared to the baseline signal from 1s prior to the exploration of the closed arms. Significant decrease
in IPN DA activity was observed 1~3s post-onset of closed arm investigations. One-way RM ANOVA
(Fi.67=7.617, P=0.0042) Dunnett’s multiple comparisons test * p<0.05, *** p<0.001. I, Example of IPN
DA AF/Fo values time-locked to the transition to the open or closed arms of the EPM as compared to
AF/Fo values obtained with random sampling across the 5 min recording session. J, Z-score values of (I).
K, Mean z-score values of the baseline and the 3 s open and closed EPM arm exploratory event for the
true signal as compared to random sampling signal. Two-way RM ANOVA, significant time x z-score
interaction F36=4.14, p=0.024, p=0.0001, Bonferroni post-hoc, **p<0.001, ***p<0.001. All data

represent mean = SEM.
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556  Fig 7. Distribution of fiber placement within the cIPN

557  Schematics and representative images of dLight1.2 biosensor expression in the IPN of C57BL/6 mice with

558  examples of fiber placements distributed along the cIPN (Bregma -3.51 to -4.04 mm). Scale bar 100 pm.
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Data structure Type of test value Significance 95% confidence

interval
normal distribution unpaired two-tailed t-test t(10) =4.546 p=0.0011 1005 to 2937
normal distribution unpaired two-tailed t-test t(10) =3.438 p=0.0064 472.4t0 2213
normal distribution unpaired two-tailed t-test t(10) =3.114 p=0.011 88.7 to 535
normal distribution unpaired two-tailed t-test t(10) =0.184 p=0.8577 -1530to 1297
normal distribution One-way repeated measures(RM) ANOVA F(3,39)=21.8 p<0.0001

Dunnett's multiple comparisons test

-1-0 s vs. 1-2s p<0.001

-0.467 to -0.225

-1-0 s vs. 2-3s p<0.01

-0.7073 to -0.2226

normal distribution One-way repeated measures(RM) ANOVA F(3,39)=0.7103 p=0.517
normal distribution two-way repeated measures(RM) ANOVA interaction p=0.0001 -0.6159 t0 -0.1622
F(1,29)=19.13
Bonferroni multiple comparisons test event signal

vs.random p<0.0001

normal distribution

two-way repeated measures(RM) ANOVA

interaction
F(1,26)=1.423

p=0.2436

normal distribution

One-way repeated measures(RM) ANOVA

F(3,67)=18.15

p<0.0001

Dunnett's multiple comparisons test

-1-0 vs. 0-1 p=0.0007

-0.4559t0-0.1324

-1-0vs. 1-2 p=0.0042

-0.6817 to -0.1301

-1-0vs. 2-3 p=0.0001

-0.958 to -0.3466

normal distribution

One-way repeated measures(RM) ANOVA

F(3,67)=7.617

p=0.0042

Dunnett's multiple comparisons test

-1-0 vs. 0-1 p=0.0005

0.1783 t0 0.5891

-1-0 vs. 1-2 p=0.0152 0.0677 to 0.6580
-1-0 vs. 2-3 p=0.032 0.029 to 0.6929
normal distribution two-way repeated measures(RM) ANOVA interaction p=0.0242 -0.54t0 0.2074

F(2,36)=4.136

Bonferroni multiple comparisons test

signal open vs.
close p=0.0008

signal open vs.
random p=0.0047
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