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Abstract 1 

Brain circuits are composed of diverse cell types with distinct morphologies, connections, and 2 

distribution of ion channels. Modeling suggests that the spatial distribution of the extracellular voltage 3 

during a spike depends on cellular morphology, connectivity, and identity. However, experimental 4 

evidence from the intact brain is lacking. Here, we combined high-density recordings from hippocampal 5 

region CA1 and neocortex of freely-moving mice with optogenetic tagging of parvalbumin-6 

immunoreactive (PV) cells. We used ground truth tagging of the recorded pyramidal cells (PYR) and PV 7 

cells to construct binary classification models. Features derived from single-channel waveforms or from 8 

spike-timing alone allowed near-perfect classification of PYR and PV cells. To determine whether there is 9 

unique information in the spatial distribution of the extracellular potentials, we removed all single-10 

channel waveform information from the multi-channel waveforms using an event-based delta 11 

transformation. We found that spatiotemporal features derived from the transformed waveforms yield 12 

accurate classification. The extracellular analogue of the spatial distribution of the initial depolarization 13 

phase provided the highest contribution to the spatial-based prediction. Compared to PV cell spikes, PYR 14 

spikes exhibited higher spatial synchrony at the beginning of the extracellular spike and lower synchrony 15 

at the trough. The successful classification of PYR and PV cells based on purely spatial features provides 16 

direct experimental evidence that spikes of distinct cell types are associated with distinct spatial 17 

distributions of extracellular potentials. 18 

 19 

Significance statement 20 

It is not clear if and how neuronal morphology, cell type, and synaptic inputs are mapped to the spatial 21 

distribution of the extracellular voltage during spikes. Here we show that spatial information alone 22 

allows accurate differentiation between pyramidal cells and parvalbumin-immunoreactive cells in 23 
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neocortex and hippocampus of freely-moving mice. The ability to distinguish cell types based on 24 

spatiotemporal properties of extracellular potentials suggests that neurons with distinct morphology, 25 

connectivity, and ion channel distributions create unique and learnable extracellular patterns. Further 26 

research may reveal whether unique spatial information is characteristic of other cell types. 27 
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Introduction 28 

Brain circuits are composed of different cell types with distinct roles in neuronal network dynamics 29 

(Tremblay et al., 2016; Tasic et al., 2018). Since the days of Brodmann (1909) and Ramón y Cajal (1909), 30 

it has been recognized that neurons in different brain regions, nuclei, and layers may have different 31 

morphologies (McKay and Turner, 2005; Ascoli et al., 2007; Clasca et al., 2012; Jones, 2012; Fujishima et 32 

al., 2018). Within a brain region, neurons that vary in the type of output (e.g., excitatory, inhibitory) and 33 

postsynaptic targets (e.g., somatic, dendritic, or axonal) exhibit distinct morphology (Markram et al., 34 

2004; Klausberger and Somogyi, 2008; Kepecs and Fishell, 2014). Histological and in vitro studies 35 

showed that the size, form, and orientation of the soma, the dendritic tree, and the axonal arbor, all 36 

vary between cells that express different genes and neurochemical markers (Monyer and Markram, 37 

2004; Zeisel et al., 2015; Zeng and Sanes, 2017). 38 

In behaving animals, extracellular recording techniques allow simultaneous recording of electrical 39 

potentials generated by multiple neurons and sampling every neuron at several spatial locations 40 

(Buzsáki, 2004; Shobe et al., 2015; Jun et al., 2017; Hong and Lieber, 2019; Steinmetz et al., 2021). Multi-41 

site recordings with well-defined electrode geometry open the door to blind cell type classification 42 

based on electrophysiological properties. The relation between morphology (structure) and neuronal 43 

cell type (function) is well established in vitro and using post-mortem immunohistology (McCormick et 44 

al., 1985; Freund and Buzsáki, 1996; Somogyi and Klausberger, 2005). Extensive modeling work has been 45 

dedicated to understand the relationship between the spatial distribution of extracellular electrical 46 

potentials resulting from spikes and neuronal morphology (Rall, 1962; Gold et al., 2009; Einevoll et al., 47 

2013). However, the relationship between the spatial distribution of extracellular electrical potentials 48 

and neuronal cell types in the intact brain remains unexplored. 49 

To determine whether spikes of different cell types give rise to distinct distributions of extracellular 50 

potentials, we focus here on pyramidal cells (PYR) and parvalbumin-immunoreactive (PV) cells in 51 
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neocortex and hippocampal region CA1. PYR have pyramid-shaped somata and vertically-oriented, 52 

apical and basal (polar) dendritic trees (Spruston, 2008). In contrast, PV (mainly basket) cells have less 53 

polarized dendritic trees, and axonal arbors that extend horizontally (Maccaferri et al., 2000; Pawelzik et 54 

al., 2002; Ganter et al., 2004). Furthermore, PYR and PV cells exhibit distinct spatial profiles of ion 55 

channels. While similar somato-dendritic gradients are observed for Na+ channels, K+ channels exhibit a 56 

steeper decreasing gradient along dendrites farther from the soma in PYR, compared to PV cells (Magee 57 

and Johnston, 1995; Johnston et al., 2000; Hu et al., 2010). To go beyond descriptive structure-function 58 

relations, we hypothesized that PYR and PV cells could be classified based solely on spatial information 59 

acquired from freely-moving mice using high-density probes. Previously, classification of PYR and 60 

interneurons in neocortex and hippocampus was based on waveform features (Henze et al., 2002; 61 

Barthó et al., 2004; Cardin et al., 2009; Stark et al., 2013; Mendoza et al., 2016; Yu et al., 2019), firing 62 

patterns (Taira and Georgopoulos, 1993; Kobayashi et al., 2019; Troullinou et al., 2020), or combinations 63 

thereof (Csicsvari et al., 1998; Frank et al., 2001; Viskontas et al., 2007). However, cell type classification 64 

based on spatial features per se was never attempted. 65 

Here, we used connectivity-based and optical tagging to establish a dataset of labeled PYR and PV cells 66 

from neocortex and CA1 of freely-moving mice. To tune the classification procedure and determine 67 

baseline performance, we first created classification models that used features based on single-channel 68 

waveforms or on spike-timing. Using a chunking-based data augmentation method, the models achieve 69 

near-perfect performance. Next, we devised an event-based delta-transformation method to conserve 70 

only purely spatial information, and derived spatial features from the multi-channel recordings. Models 71 

trained on spatial features derived from the transformed waveforms yield accurate classification. The 72 

findings suggest that differences between PYR and PV neuronal morphology, connectivity, and ion 73 

channel distributions are reflected in the extracellular potentials in a consistent manner. 74 
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Materials and Methods 75 

 76 

Experimental design  77 

The dataset used in this study has been previously analyzed (Stark et al., 2013). 78 

 79 

Experimental animals 80 

Seven PV::ChR2 male mice, generated by crossing homozygous male Ai32 mice (#012569, Jackson labs) 81 

with homozygous female PV-Cre mice (#008069, Jackson Labs), were used for chronic recordings. The 82 

animals and data were used for the work by Stark et al., 2013. All animal handling procedures were 83 

approved by the Rutgers University and New York University Animal Care and Facilities committees. 84 

 85 

Probes and surgery 86 

Every animal was implanted with a four-shank diode probe as previously described (Stark et al., 2012). 87 

Probes were constructed by coupling 470 nm blue LEDs (LB P4SG, Osram; 2 mm diameter) to 50 µm 88 

multi-mode optical fibers and attaching every diode-fiber assembly to a single shank of a 32-site/four-89 

shank silicon probe (Buzsaki32, NeuroNexus). Fiber tips were located ~50 µm above the top recording 90 

site. Probes were implanted in the right hemisphere at PA -1.6/ML 1.1 mm under isoflurane anesthesia. 91 

During surgery, the probes were lowered to a depth of 0.4-0.7 mm.  92 

 93 

Recordings and photostimulation 94 

After allowing the animals to recover for at least 48 hours, recordings were initiated. Recordings were 95 

carried out in the home cage during spontaneous behavior. Mice were tethered by one ultralight cable 96 

for multi-channel neuronal recordings and a second cable for multi-channel optical stimulation. 97 
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Recordings were conducted as the probe was moved gradually from the neocortex to the CA1 pyramidal 98 

cell layer. At each location in the brain, neuronal activity was inspected for spontaneous spiking activity, 99 

and if encountered, a baseline period of at least 15 minutes was recorded followed by photostimulation 100 

(peak driving current, 60 mA; mean±SD peak light power: 35±7 µW; 50-70 ms pulses). Signals were 101 

generated by custom code written in MATLAB (MathWorks), converted by a digital signal processor (RX5 102 

and/or RX6, TDT) to voltage signals, and fed into a linear 16-channel current source. After each session, 103 

the probe was either left in place or moved (35-70 µm steps), and the brain was allowed to settle 104 

overnight. 105 

 106 

Spike sorting and ground truth labels  107 

During recordings, neural activity was filtered (1-5,000 Hz), amplified (x20 by Plexon headstages and 108 

x50 by an RC Electronics system), and digitized (16 bits, 20 kHz) on a 128-channel DataMax recording 109 

system (RC Electronics). Applied currents were recorded by the DataMax system. Offline, spike 110 

waveforms (32 samples per channel) were extracted from the wide-band records, detrended, and 111 

sorted into single units automatically (Harris et al., 2000), followed by manual adjustment. Only well-112 

isolated units (amplitude >50 μV; L-ratio <0.05, Schmitzer-Torbert et al., 2005; ISI index <0.2, Fee et al., 113 

1996) were considered. A total of 199 neocortical and 781 CA1 units conformed to these criteria. 114 

For connectivity-based tagging, we tagged units that participated as a reference in a cross-correlation 115 

histogram (CCH) that exhibited a significant (p<0.001, Bonferroni-corrected Poisson test) peak in the 116 

monosynaptic time range (0 to 5 ms) as excitatory cells (424/980 units). Units that exhibited a significant 117 

trough in the monosynaptic time range were tagged as inhibitory (21/980 units). For optogenetic-based 118 

tagging, units that exhibited a significant (p<0.001, Poisson test) increase in spiking rate during 50-70 ms 119 

DC pulses given on the recording shank were tagged as optically-activated cells; 98/980 (10%) units 120 

conformed to the criterion. Next, we labeled units based on the three tags. Units tagged exclusively as 121 
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excitatory were labeled as PYR (420 units), whereas units that were optically-activated or inhibitory (but 122 

not excitatory) were labeled as PV cells (102 units). The remaining units (458/980, 47%) were not 123 

labelled and were discarded from the dataset. Ten of the labeled units (nine PYR, one PV) were recorded 124 

using seven instead of eight channels and were therefore discarded as well, yielding a final dataset that 125 

included 512 tagged units (411 PYR, 101 PV; Fig. 1). Of the 101 units referred to as “PV cells”, 93 were 126 

optically activated (92%), 13 were both optically activated and inhibitory, and eight units were only 127 

inhibitory. Spike width, firing rate, and bursting behavior were similar for the inhibitory and the optically 128 

tagged PV cells. Thus, the eight inhibitory-tagged PV-like cells were grouped with the 93 optically-129 

activated cells, and the entire group was denoted as PV. A majority of the units (449/512) were recorded 130 

from CA1. The median [inter-quartile interval, IQR] number of spikes per unit was 8,368 [4,494 16,929] 131 

for PYR, and 66,850 [13,031 174,802] for PV cells. 132 

 133 

Classification  134 

Feature extraction 135 

The shape and timing of the recorded spikes were used to extract a total of 34 features. We derived 136 

features of three modalities: waveform-based features, derived from a single channel (n=8); spike-137 

timing features, ignoring the spike waveform (n=8); and spatial features, derived from the multi-channel 138 

waveforms (n=18). All features were based exclusively on spontaneous events that occurred in the lack 139 

of any light stimuli. For every spike, the waveform was extracted for 32 samples (1.6 ms) on every 140 

channel of the recording shank. The limited duration of the spikes places an upper bound on the 141 

classification performance of waveform-based and spatial models. For every channel separately, the 142 

waveform was averaged over spikes, and the mean waveform was calculated and upsampled eight-fold 143 

using Fourier interpolation to increase the temporal resolution. Since the average and the Fourier 144 

transform are linear operators, the order of the two steps does not affect the outcome. 145 
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 146 

Single-channel feature extraction 147 

For the waveform-based features, the channel with the largest trough-to-peak (TTP) magnitude was 148 

denoted as the “main” channel. The waveform in the main channel was scaled by dividing all values by 149 

the minimal value (i.e., at the trough). Scaling was done to remove information about the sampling 150 

process, e.g., electrode impedance and neuron-electrode distance. When the absolute value at the 151 

trough was smaller than at the peak, waveforms were inverted (multiplied by -1). The outcome is a 256-152 

element vector limited to the [-1, 1] range, with at least one value at -1. To provide a rich description of 153 

the waveform, a total of n=8 waveform-based features were extracted from the main channel (Fig. 2; 154 

Table 1): four from the waveform itself, one from the first temporal derivative, and three from the 155 

second temporal derivative. For every feature, we compared the distribution of values between all 156 

available PYR (n=411) and PV cells (n=101) and calculated effect sizes. The specific measure of effect size 157 

used was the nonparametric estimator for common-language effect size (Aw; Ruscio, 2008) which 158 

exhibits a smaller bias compared to alternatives (Li, 2016). Aw estimates the probability that a random 159 

sample from one distribution is larger than a random sample from a second distribution. Disregarding 160 

the direction of the effect, Aw is thus limited to the 0.5 to 1 range, taking a value of 0.5 when the two 161 

distributions are fully intermixed, and 1 when the two distributions do not overlap at all. All eight 162 

features (100%) exhibited a consistent difference (0.64≤Aw≤0.98; p<0.05, U-test; Table 1). Thus, all 163 

waveform-based features are potentially useful for classification. 164 

The addition of a redundant feature would contribute no additional information to the classification 165 

process. To estimate relations between features, we first computed rank (Spearman’s) correlation 166 

coefficients (CCs) between every possible pair of waveform-based features (Extended Data Fig. 2-1A). To 167 

go beyond monotonic relations, we estimated mutual information (MI) between distributions of pairs of 168 

features (Timme and Lapish, 2018). If a feature had less than ten unique values, the feature was 169 
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considered naturally discrete; only the SPD-Count feature (see Spatial feature extraction below) was 170 

naturally discrete. The use of ten bins limits the maximal information to log210=3.3 bits. Deviation from 171 

chance level was determined using a permutation test, creating a null distribution based on 5,000 172 

iterations of shuffled pairs and evaluating the tail of the null distribution above the observed MI. We 173 

found that some features were only weakly correlated with others (e.g., the Break-measure, median 174 

[IQR] absolute CC 0.19 [0.076 0.24]), suggesting that independent information could be gleaned by using 175 

the feature. Alternatively, a weakly-correlated feature may be dominated by noise. However, the 176 

possibility is unlikely since the Break-measure differed for the PYR and PV groups (Aw=0.64; p=7.85x10-6, 177 

U-test; Table 1). Other features were more strongly correlated with the host of other features (e.g., full-178 

width at half-maximum [FWHM]: 0.81 [0.45 0.87]; Smile-cry: 0.76 [0.33 0.91]). Since a small number of 179 

samples limits the power of standard statistical tests (e.g., the Mann-Whitney U-test), when comparing 180 

CCs between two groups within a modality we applied a permutation test. We compared a statistic, 181 

defined as the difference between the medians of the two groups of CCs, to the 95th percentile of a null 182 

distribution created by shuffling the CCs between the groups, and calculating the statistic 1,000 times. 183 

We did not observe stronger absolute CCs within families: the absolute intra-family correlation was 0.37 184 

[0.14 0.62], whereas the absolute inter-family CC was 0.47 [0.24 0.79] (p>0.05, permutation test). 185 

Quantifying the interrelations between waveform-based features using MI yielded similar results. The 186 

median [IQR] MI between waveform-based feature distributions was 0.658 [0.292 0.955] bits, and the 187 

rank correlation coefficient between the MI and CCs was 0.816 (p=0.001, permutation test; Extended 188 

Data Fig. 2-1B, inset). The bulk of the variance in the MI (R2=0.67) could be explained by pairwise rank 189 

correlations, suggesting that interrelations between feature pairs are largely monotonic. Thus, based on 190 

the feature redundancy analysis, partitioning into families may have only semantic value, and all derived 191 

features may contribute to classification. 192 

 193 
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Spike-timing features 194 

For the features based on spike-timing, the autocorrelation histogram (ACH) was calculated for every 195 

unit over a range of ±1,000 ms using a bin size of 0.5 ms. The ACH depends only on the timing of the 196 

spikes and is agnostic to the spike waveforms. The ACH was upsampled eight-fold using polyphase 197 

filtering to increase the temporal resolution. The ACH is an even function, but edge effects necessarily 198 

cause asymmetry in any practical implementation. To obtain an ACH (0-1,000 ms) free from edge 199 

effects, the value in every positive time bin was averaged with its negative homolog. A total of n=8 200 

spike-timing features were derived (Fig. 2; Table 2). Three of the features were high-frequency features, 201 

derived from the short-term ACH (up to 50 ms). Two were low-frequency features, derived from the 202 

long-term ACH (50-1,000 ms). The last three were wide-band features: two were derived from the 203 

complete ACH (0-1,000 ms), and one was derived from the entire recording. For every feature, we 204 

compared the values derived for the PYR and PV cells. All eight features (100%) exhibited a consistent 205 

difference between PYR and PV cells (p<0.05, U-test; Table 2). Thus, spike-timing features may be useful 206 

for classification. 207 

To quantify interrelations, we computed CCs and MI between spike-timing features extracted from the 208 

complete spike trains (Extended Data Fig. 2-2). The high-frequency features exhibited high within-family 209 

absolute correlations (0.85 [0.83 0.88]), whereas lower absolute correlation values were observed 210 

between the other features (low-frequency and wide-band families together: 0.26 [0.24 0.70]; p=0.098, 211 

permutation test; Extended Data Fig. 2-2A). In contrast to the waveform-based feature families, intra-212 

family absolute correlations (0.81 [0.49 0.83]) were higher than inter-family absolute correlations (0.50 213 

[0.40 0.61], p=0.012, permutation test). MI between pairs of spike-timing features yielded similar results 214 

to the pairwise correlations. The median [IQR] MI between spike-timing features was 0.469 [0.283 215 

0.701] bits, and the rank correlation coefficient between MI and CCs was 0.967 (p=0.001, permutation 216 

test; R2=0.93; Extended Data Fig. 2-2B, inset). The fact that almost all variance of the MI values is 217 
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explained by pairwise correlations suggests that the interrelations between the pairs of features are 218 

largely monotonic. The correlations between high-frequency features, namely Uniform-distance, DKL-219 

Short, and Rise-time suggest that the features provide redundant information. Thus, a small number of 220 

spike-timing features may suffice for classification. 221 

 222 

Spatial feature extraction 223 

For extracting purely spatial features, an event-based delta transformation was first applied to the 224 

mean upsampled waveform of every channel to remove all waveform-based information (Fig. 3A). (1) 225 

First, positive spikes were inverted as done for the waveform-based process. (2) Next, three events were 226 

defined. One event was the time of maximal negativity (NEG). For the additional two events, the median 227 

over all the channels was calculated. The second event was the first median crossing (FMC), the first 228 

time point before the maximal negativity of the channel in which the global median was crossed. The 229 

third event was the second median crossing (SMC), the first time point after the maximal negativity of 230 

the channel in which the global median was crossed. Every event was detected on every channel, 231 

yielding a total of 24 points. (3) Third, the waveform was replaced by a delta-like function that took the 232 

value of the maximal negativity of the channel at the singular event time point and zeroes everywhere 233 

else. The delta-like functions were scaled by the absolute value of the global minimum over all channels, 234 

effectively removing all waveform-based information from every single channel. However, waveform-235 

based information may still be available when using multiple events together (e.g., FMC, NEG, and SMC). 236 

(4) To remove all waveform-based information, the delta functions were shifted together to centralize 237 

(shift to the 129th sample) the time of the event on the main channel. The process transforms the 238 

waveform in the main channel to be nearly identical for all units (Fig. 3B). Residual variability in the time 239 

of the trough may remain if the channel with maximal magnitude of the TTP and the channel with the 240 

maximal negativity are not the same. 241 
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Overall, n=18 features were extracted from the transformed waveforms (Table 3) associated with the 242 

three events, quantifying three dimensions: time-based, graph-based, and value-based. (1) In the time-243 

based dimension, only the timing of the events was considered (e.g., the standard deviation [SD] of the 244 

FMC: FMC-Time-lag-SD; Fig. 3D). Channels for which the magnitude of the TTP (prior to delta 245 

transformation) did not pass an arbitrary threshold of 25% of the maximal magnitude of the TTP over all 246 

channels were ignored (Fig. 3D, gray). A median [IQR] of 4 [3 5] PYR channels and 3 [2 5] PV cell channels 247 

were removed. (2) The graph-based dimension included both event timing and the physical locations of 248 

the recording electrodes on the probe. An event graph was generated based on a specific event, with a 249 

node for each channel (e.g., FMC-Average-weight; Fig. 3E). Only channels for which the magnitude of 250 

the TTP passed the 25% threshold were considered. Directed edges connected every two non-251 

overlapping events, with a weight representing “transmission speed”: the Euclidean distance between 252 

the electrodes, divided by the time difference between the events. (3) The value-based 253 

dimension (spatial dispersion [SPD]) ignored timing information and considered the scaled maximal 254 

negativity values on every channel, based on the global maximal negativity (e.g., SPD-Count; Fig. 3F). We 255 

found that 10/18 (56%) of the spatial features exhibited differences between PYR and PV cells (p<0.05, 256 

U-test). Although some features do not show consistent differences between the two cell types, 257 

classification may benefit from the features due to, for instance, distinct second-order statistics. 258 

To estimate feature redundancy due to high correlations, we computed the CCs between the spatial 259 

features extracted from the transformed mean waveforms (Extended Data Fig. 3-1A). The rank 260 

correlation matrix of the spatial features showed absolute correlations (median [IQR]: 0.2 [0.1 0.33]), 261 

that were weaker than for the waveform-based features (p=3.5x10-4, U-test) and for the spike-timing 262 

features (p=1.1x10-7). 80% of the spatial feature pairs exhibited absolute correlations higher than zero 263 

(122/153, p<0.05 permutation test). Intra-family absolute correlations (0.27 [0.17 0.42]) were higher 264 

than inter-family correlations (0.17 [0.08 0.29], p=0.006, permutation test). The median [IQR] MI 265 
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between spatial-based feature distributions was 0.19 [0.155 0.266] bits, and the rank correlation 266 

coefficient between MI and CCs was 0.84 (p=0.001, permutation test; R2=0.706; Extended Data Fig. 3-267 

1B). Since the correlation and the MI analysis agreed, the relatively weak correlations between spatial 268 

features may result from large amounts of noise in every feature. Alternatively, the features may 269 

provide independent information, useful for classification. 270 

 271 

Classification procedure 272 

The classification model was chosen to be random forests (Breiman, 1996, 2001) due to the relative 273 

simplicity. Furthermore, several methods are available for understanding the determinants of a specific 274 

random forest model prediction (e.g., Archer and Kimes, 2008). To achieve good estimation of model 275 

performance, a nested cross-validation procedure was applied (Varma and Simon, 2006; Krstajic et al., 276 

2014). For every modality (waveform, spike-timing, and spatial) the training procedure was repeated 277 

n=50 times. In every iteration, data were first partitioned in an approximate 80:20 ratio into training and 278 

test sets in a stratified fashion. Thus, the training set always included 328 PYR and 80 PV cells, and the 279 

test set included 83 PYR and 21 PV cells; only the identity of the units changed between iterations. To 280 

handle the imbalance between the number of PYR and PV cells in the data set, the model weights that 281 

control the effect of every class on the impurity score used for training the random forest model were 282 

adjusted. Specifically, instead of assigning equal weights, class weights were set to be inversely 283 

proportional to the number of samples in every class using: total number of training set samples / 284 

(number of classes × number of class samples in the training set). Second, a 5-fold grid search was 285 

conducted on the training set to find the best hyperparameters for the model, optimizing the area under 286 

the receiver operating characteristic (ROC) curve (AUC). The tested hyperparameters were the number 287 

of estimators, the depth of each estimator, the minimal number of samples required to split a node, and 288 

the minimal number of samples required to be at a leaf node. Other hyperparameters received default 289 
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values based on the implementation of the scikit-learn library in Python (Pedregosa et al., 2011). Third, 290 

using the optimized hyperparameters, the model was trained on the entire training set. Finally, model 291 

performance was evaluated using the test set. 292 

 293 

Performance and explainability 294 

Model performance was assessed using a metric that is robust to unbalanced data. Two types of 295 

metrics exist: threshold-dependent and threshold-independent. Threshold-dependent metrics consider 296 

only the binary decision: in our case, PYR or PV. Threshold-independent metrics consider the raw 297 

prediction, a value between 0 and 1, and not the decision itself. Threshold-dependent metrics require 298 

choosing a threshold, and thus the outcome may vary according to the chosen decision threshold. An 299 

arbitrarily-chosen threshold does not necessarily reflect performance, especially when considering 300 

unbalanced datasets (Sheng and Ling, 2006). The choice of a decision threshold is not trivial, and is the 301 

subject of active research (e.g., Esposito et al., 2021). For these reasons, we used an established 302 

threshold-independent metric, the AUC (Fawcett, 2006). The AUC reflects the relation between true 303 

positives and false positives for all possible thresholds, and is hence threshold-independent as well as 304 

suitable for unbalanced datasets. 305 

The theoretical chance level for the AUC metric is 0.5. To determine the empirical chance level, the 306 

performance of models trained on data with shuffled training-set labels was assessed. For every 307 

modality (waveform, spike-timing, and spatial), the training procedure was conducted with the labels 308 

shuffled only for the training set. The AUC exhibited the expected chance level behavior, yielding 309 

median [IQR] values of waveform: 0.46 [0.34 0.57]; spike-timing: 0.46 [0.39 0.56]; and spatial: 0.48 [0.44 310 

0.55]. Since chance level results were obtained on the test sets, further assessment of model 311 

performance was carried out with respect to 0.5, the theoretical chance level. 312 
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To assess the contribution of every feature to the final classification prediction, we used Shapley 313 

additive explanations (SHAP) values (Lundberg et al., 2020). The SHAP method uses a game-theoretic 314 

approach to calculate an importance score for every feature in each sample, considering all inter-315 

dependencies with other features. Since the predictions of random forest models range from 0 to 1, the 316 

contribution of every feature can take values from -1 to 1. For each model, we calculated and averaged 317 

the absolute contribution of every feature based on the test set, taking the median over the 50 318 

partitions to avoid idiosyncrasies of a single arbitrary partition. Since the absolute value is taken, SHAP 319 

values are necessarily non-negative, creating a skewed distribution that does not have an expected 320 

value of zero. To calculate significance, we used a permutation test. The SHAP values for each feature 321 

were compared to the SHAP values obtained for the models trained with shuffled training-set labels. 322 

Models trained with shuffled labels represent chance level classifiers, for which the importance of every 323 

feature can be considered as the chance level baseline. To create a null distribution, we partitioned the 324 

dataset into a train and test sets 1,000 times. For every train-test partition, we shuffled the labels, 325 

trained the models as described previously, and calculated the SHAP values. Then, to calculate a p-value 326 

for every feature, we compared the original SHAP value to the 95th percentile of the null distribution. 327 

   328 

Chunking method 329 

Models trained on larger non-redundant datasets typically exhibit improved performance. Therefore, 330 

data augmentation approaches to synthetically increase the size of the dataset are often applied (e.g., 331 

Moreno-Barea et al., 2018). Augmentation may be implemented by adding noise or transforming the 332 

data (e.g., rotation and reflection in image classification; Mikołajczyk and Grochowski, 2018). Here, to 333 

augment the size of a given dataset, features were extracted from “chunks” that included subsets of 334 

spikes, instead of using all available spikes together. Thus, we increased variability using the natural 335 
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richness of the data that is otherwise flattened to a single mean waveform. The chunking process 336 

increases the number of samples in the dataset, with the possible cost of increased noise. 337 

A total of n=7 different chunk sizes were used, with 25, 50, 100, 200, 400, 800, or 1600 spikes per 338 

chunk. For a given unit with N spikes and a chunk size C, the spikes were randomly split into ⌊N/C⌊ 339 

chunks so that every chunk consisted of between C and 2C-1 distinct spikes. Spikes were randomly 340 

assigned to chunks. In a given split, all chunks consisted of the same number of spikes up to a difference 341 

of a single spike. Every chunk received the label of the source unit. Due to the different numbers of 342 

spikes recorded for PYR and PV cells (5,651,196 PYR spikes and 11,612,978 PV cell spikes), the balance 343 

between PYR and PV samples changed compared to the original dataset (411 PYR and 101 PV cells). For 344 

instance, using a chunk size of 25 spikes, the total number of PYR samples was 225,850 while the 345 

number of PV samples was 464,473. 346 

To determine features for every chunk separately, the waveforms were averaged over all available 347 

same-channel spikes within a chunk, from which waveform and spatial features were derived. To derive 348 

chunk-specific spike-timing features, the ACH was accumulated by summing over all single-spike ACHs. 349 

For every spike, the single-spike ACH was based on all spikes that occurred in the -1,000 to 1,000 ms 350 

time window around the reference spike. To be applicable to the chunking case, the single-spike firing 351 

rate was defined as the mean of the inverse inter-spike intervals before and after the spike. 352 

To provide information about the distribution of the values over chunks, several statistics were 353 

extracted from the individual values of every chunk. Extracting statistics based on all the chunks of a unit 354 

allows considering intra-unit variability as a feature. For every feature, the mean, SD and the 25%, 50%, 355 

and 75% quantiles were extracted (referred to as “chunk statistics”). Note that extracting the mean out 356 

of all the individual feature values of the chunks is not the same as not using chunking. Without 357 

chunking, first all the waveforms are averaged, transformed, and then features are extracted. In 358 

contrast, when using the mean over chunks, averaging happens at the end of the process (averaging the 359 
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waveforms within a chunk still happens at the beginning). If all steps are linear, the two processes yield 360 

the same results. However, since feature extraction is not a linear operator, the mean statistic may 361 

contain unique information. The specific statistics were chosen to capture the first and second moments 362 

of the across-chunk distribution and for their simplicity. The chunk statistics can be expanded further to 363 

capitalize on different properties of the distribution over different chunks. The five new chunk statistics 364 

increased the total number of features used by the model six-fold. Notably, the chunk statistic features 365 

were the same for all the chunks of a given unit. 366 

When training models using chunks, the data were partitioned based on units. In the training set, 367 

every chunk was considered independently (not as part of the unit). In addition, instead of performing a 368 

grid search for every chunk size, the hyperparameters for all chunk sizes were chosen by a no-chunking 369 

equivalent. Chunk statistics were extracted for the no-chunking dataset as well, so the number of 370 

features was equal to the number of features in the chunking method. The models applying chunking 371 

used the hyperparameters found using the no-chunking equivalent grid search, based on the same 372 

partition of the data to training and test sets. For testing and evaluating, every chunk received an 373 

independent prediction. Then, predictions were pooled over all same-unit chunks by casting a majority 374 

vote, yielding a final chunk-based prediction for the unit. 375 

When calculating the SHAP values for the chunking-based models, we randomly chose 1,000 samples 376 

out of the test set. The procedure for computing SHAP values for chunking-based data was otherwise 377 

the same as for the no-chunking data. The absolute SHAP value of every feature was summed together 378 

with the values of the chunk statistics extracted from the same feature, yielding a single importance 379 

value for every original feature. 380 

 381 
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Generalization analysis 382 

Units in the tagged dataset were recorded from CA1 (449/512, 88%) and from neocortex. The 383 

availability of tagged data from two brain regions allows testing and quantifying inter-region 384 

generalization. Generalization was determined by the performance of models trained using recordings 385 

from one region on test data from the same region (“training region”), and from the other region (“non-386 

trained-upon region”). To directly quantify generalization, we partitioned the full dataset into three sets 387 

for each training region. (1) A training set, containing approximately 80% of the training region units 388 

(CA1: 301 PYR, 58 PV; neocortex: 27 PYR, 23 PV); (2) a test set, containing the remaining 20% of the 389 

training region units (CA1: 76 PYR, 14 PV; neocortex: 7 PYR, 6 PV); and (3) a second test set, containing 390 

all units of the non-trained-upon region (neocortex: 34 PYR, 29 PV; CA1: 377 PYR, 72 PV). Waveform, 391 

spike-timing, and spatial models were trained on the reduced CA1 dataset with 50-, 1600-, and 25-spike 392 

chunks, respectively (found to yield the best performance for each modality on the combined dataset). 393 

Chunked data was used for the grid search: the training set was further partitioned into a “development 394 

set” containing 80% of the units and an “evaluation set” containing 20% of the units. If the development 395 

set contained more than 5,000 chunks, the grid search was conducted on a random subset of 5,000 396 

chunks, minimizing run time while allowing an efficient search. The difference in the number of units 397 

between the CA1 and neocortical training sets leads to an inherent difference in absolute performance 398 

between the two training region conditions. However, generalization can be readily compared between 399 

the two conditions based on the performance of the test set of the non-trained-upon region relative to 400 

the performance of the test set from the training region. 401 

 402 

Statistical analyses 403 

A threshold of α=0.05 was used for all statistical tests. An exception was the threshold used for tagging 404 

the units, namely for determining whether a unit exhibits light activation, and whether two units exhibit 405 
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monosynaptic connectivity (α=0.001). All descriptive statistics (n, median, IQR) can be found in the 406 

results, figures, tables, and legends. Differences between the medians of two unpaired groups were 407 

compared using Mann-Whitney’s U-test (two-tailed unless otherwise specified). Differences between 408 

the median of a single group and a number, or between the medians of two paired groups, were 409 

compared using Wilcoxon’s signed-rank test (one-tailed unless otherwise specified). Comparisons of 410 

more than two groups were conducted using Kruskal-Wallis one-way non-parametric analysis of 411 

variance, and corrected for multiple comparisons using Tukey’s procedure. Rank (Spearman’s) 412 

correlation coefficients were tested using a permutation test. All statistical tests were conducted using 413 

either SciPy library (Virtanen et al., 2020) or custom code implemented in Python and MATLAB. 414 

 415 

Code accessibility 416 

The code used for feature extraction, model training, and visualization is freely available on GitHub 417 

(https://github.com/EranStarkLab/SpatiotemporalSpiking).  418 
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Results 419 

 420 

PYR and PV interneurons are tagged in freely-moving mice 421 

Differentiating between PYR and PV cells based on electrical properties requires a ground truth labeled 422 

dataset. We recorded and tagged extracellular spiking data from freely-moving PV::ChR2 mice (n=7) 423 

using chronically-implanted four-shank, 32-channel optoelectronic arrays (Fig. 1Aa). Every shank was 424 

equipped with a diode-coupled fiber, enabling independent illumination of small local groups of neurons 425 

while concurrently recording the extracellular activity (Fig. 1Ab). We used 50-70 ms light pulses for 426 

optical tagging. A unit was tagged as PV if the stimulus-locked firing rate increase was consistently above 427 

baseline (p<0.001, Poisson test; Fig. 1Ac). Using the optical tagging procedure, a total of 27 units from 428 

the neocortex and 71 from CA1 were tagged as PV cells. 429 

For every pair of simultaneously-recorded units, we calculated the spike-to-spike CCH and tested for 430 

peaks in the monosynaptic time range (0-5 ms; p<0.001, Bonferroni-corrected Poisson test). Units that 431 

participated as a reference in a CCH that exhibited a significant peak were tagged as excitatory (Fig. 1B). 432 

Using the monosynaptic CCH analysis, 424 units were tagged as excitatory and 21 as inhibitory; 13/21 433 

units were both inhibitory and optically-activated. Together with the optically-tagged PV cells and after 434 

removing invalid samples (Materials and Methods), the dataset consists of 512 units, of which 411 units 435 

(80.3%) are PYR (Fig. 1C). 436 

 437 

Waveform-based and spike-timing features allow near-perfect classification of PYR and PV cells 438 

Waveform-based spike properties differ between PYR and PV cells and are widely used for cell type 439 

classification (Barthó et al., 2004; Cardin et al, 2009; Stark et al., 2013). However, many classifiers 440 

employ waveform-based features in conjunction with features based on spike-timing, and previously-441 

used spike-based classifiers have not been cross-validated. For every unit, we calculated n=8 features 442 
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based on the waveform of the main channel (e.g., TTP-duration, Fig. 2A; Table 1), defined as the channel 443 

with the largest magnitude of the TTP. After deriving features for every unit, we trained and tested 444 

classification models. The area under the curve (AUC) for the models was 0.995 [0.978 1] (median [IQR]; 445 

p=3.1x10-10, Wilcoxon test compared to chance level, 0.5). Despite the high AUC, model performance 446 

improved when spikes were partitioned into chunks of 25, 50 and 200 spikes (p<0.05, Wilcoxon test). 447 

Partitioning into 50-spike chunks increased the original AUC by 0.11 [0 0.55] % to 0.999 [0.989 1], 448 

p=0.001, Wilcoxon test; Fig. 2B). A feature importance (SHAP) analysis carried out on the models trained 449 

with 50-spike chunks (Table 1) indicated that the TTP-duration feature provided the largest contribution 450 

to the prediction (median [IQR] over all 50 instantiations: 0.25 [0.23 0.26], p=0.001, permutation test). 451 

The fact that the AUC is near unity means that models based strictly on waveform features achieve near-452 

perfect classification.  453 

While spike-timing information has been used for cell type classification before, most implementations 454 

also considered waveform-based features (Csicsvari et al., 1998; Frank et al., 2001; Viskontas et al., 455 

2007). To directly test whether spike-timing alone can yield accurate classification, we derived n=8 456 

spike-timing features from the spike trains of every unit (e.g., Uniform-distance, Fig. 2C; Table 2). We 457 

conducted the training and evaluation process for the spike-timing modality as for the waveform-based 458 

classification. Without chunking, the AUC was 0.975 [0.957 0.986] (p=3.8x10-10, Wilcoxon test). The 459 

performance of the spike-timing models did not exhibit consistent improvement upon chunking (p>0.05 460 

for all chunk sizes, Wilcoxon test). Nevertheless, the highest improvement in the AUC was achieved 461 

using 1,600-spike chunks, increasing performance by 0.28 [-0.39 0.74] % to yield an AUC of 0.977 [0.965 462 

0.987] (p=0.07, Wilcoxon test; Fig. 2D). SHAP analysis using models trained with 1,600-spike chunks 463 

(Table 2) attributed the highest importance to the DKL-Long feature (0.19 [0.17 0.2]), followed by the 464 

Uniform-distance feature (0.14 [0.12 0.16]; p<0.002 for both, U-test). The results suggest that both high-465 
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frequency and low-frequency features contribute to differentiation between PYR and PV cells, allowing 466 

near-perfect performance. 467 

 468 

Transforming multi-channel spike waveforms to event-based delta-like functions removes all 469 

waveform-based information and allows extracting purely spatial features 470 

Having established a cross-validated pipeline for cell type classification from spike data, we turned to 471 

focus on spatial features. To limit the information to spatiotemporal features per se, we first removed 472 

all single-channel waveform information from the waveforms recorded over the eight channels using an 473 

event-based delta transformation (Materials and Methods; Fig. 3A). The procedure was applied to three 474 

distinct events: the first median crossing (FMC), the maximal negativity (NEG), and the second median 475 

crossing (SMC). The transformation yielded nearly identical main channel waveforms for all units (Fig. 476 

3B). To determine whether the delta transformation indeed removed all single-channel waveform 477 

information, we used the transformed spikes as input for waveform-based feature extraction, followed 478 

by model training and testing. The classification models yielded chance level results. Specifically, the 479 

AUC was 0.5 [0.5 0.5] (p=0.99, Wilcoxon test; Fig. 3C). When using a naïve decision threshold of 0.5, the 480 

same class was predicted for every sample (Fig. 3C, inset). Thus, the delta-transformed waveforms are 481 

devoid of waveform-based information.  482 

From the transformed waveforms recorded on the eight channels, n=18 spatial features were derived 483 

for every unit (Table 3). The features were partitioned into three families: time-based (Fig. 3D), graph-484 

based (Fig. 3E), and value-based (Fig. 3F; Materials and Methods). 10/18 (56%) of the spatial features 485 

exhibited differences between the PYR and PV populations (p<0.05, U-test). To estimate feature 486 

redundancy, we computed rank CCs and MI between every pair of spatial features. The matrix of CCs 487 

between spatial features (Extended Data Fig. 3-1) showed absolute correlations (median [IQR]: 0.2 [0.1 488 

0.33]) that were smaller than for the waveform-based features (0.43 [0.2 0.77]; p=3.5x10-4, U-test) and 489 
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for the spike-timing features (0.52 [0.38 0.7]; p=1.1x10-7). Furthermore, mutual information (MI) values 490 

between spatial feature distributions were smaller than MI between waveform-based features 491 

(p<7.1x10-9, U-test) and smaller than MI between spike-timing features (p<4.3x10-9). Moreover, absolute 492 

inter-modality CCs (0.13 [0.07 0.20]) were smaller than absolute intra-modality CCs (0.244 [0.13 0.48]; 493 

p=3.1x10-19, U-test). The weak correlations between spatial and waveform-based features, and between 494 

spatial and spike-timing features, suggest that a combination of features from different modalities may 495 

be beneficial for classification. Finally, the differences between the PYR and PV groups for most spatial 496 

features, together with the relatively weak mutual information between pairs of spatial features, 497 

suggest that the various spatial features may contain non-overlapping information useful for 498 

classification. 499 

 500 

The variance of spatial features over channels and across chunks is different for PYR and for PV cells 501 

A direct comparison of the spatiotemporal dispersion of the event times between PYR and PV cells 502 

revealed event-dependent synchronization differences for both cell types (p<4.5x10-20, Kruskal-Wallis 503 

test; Fig. 4A). For PYR, an increase in spatiotemporal synchronization from FMC to NEG was observed 504 

(exhibited by a decrease in the SD; FMC: 15.9 [8.8 26.3] μs; NEG: 13.5 [7.7 23.5] μs; p<0.02, Kruskal-505 

Wallis test, corrected for multiple comparisons). An increase from FMC to NEG was also seen for PV cells 506 

(FMC: 40.6 [17.4 86.3] μs; NEG: 9.4 [5.4 13.3] μs; p<1x10-19). For both cell types, the increase in 507 

synchronization was followed by a decrease from NEG to SMC (SMC: PYR: 26 [18.8 34.3] μs, p<2.2x10-16; 508 

PV: 24.1 [15.6 38.9] μs, p<3.6x10-11). Thus, for both PYR and PV cells, spatiotemporal synchronization 509 

changes during the course of an action potential. 510 

Next, we assessed whether PYR and PV cells exhibit differences in spatiotemporal synchronization 511 

during specific events. Higher spatiotemporal synchronization was observed for PYR spikes compared to 512 

PV cells during FMC, expressed by lower SD (Aw=0.72; p=2.3x10-12, U-test; Table 3). Thus, the FMC event 513 
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occurred on multiple channels nearly at the same time for PYR spikes, whereas for PV cell spikes the 514 

FMC was more dispersed in time. Synchronization flipped during the NEG event, with higher 515 

synchronization for the PV cell spikes (Aw=0.63; p=3.44x10-5, U-test). We did not observe consistent 516 

differences during the SMC event (Aw=0.50; p=0.47, U-test). Similar changes between events were 517 

observed for the Time-lag-SS and the Shortest-path features (Extended Data Fig. 4-1). The 518 

synchronization differences between the spikes of PYR and PV cells may reflect the distinct 519 

morphological and functional properties of the different cell types. 520 

Intra-unit variability, the variability across the chunks of the same unit, may degrade classification 521 

performance. Alternatively, intra-unit variability may differ between classes and possibly benefit 522 

classification. Of the statistics extracted from the chunks, the SD is a second moment statistic, and may 523 

hold unique information compared to the other chunk statistics employed. Specifically, we examined 524 

the intra-unit SD values for all spatial features calculated based on 25-spike chunks (the smallest chunk 525 

size employed). To allow comparing SDs of multiple features, features were scaled based on all units 526 

before calculating the SD for every unit. Most (13/18) features showed consistent differences of the SD 527 

between the PYR and PV cells groups (0.56≤Aw≤0.90; p<0.05, U-test; Table 4). All features that did not 528 

differ consistently between the two cell types were of the graph-based family (FMC-Average-weight, 529 

SMC-Average-weight, SMC-Longest-path, FMC-Shortest-path, and SMC-Shortest-path; 0.50≤Aw≤0.54; 530 

p>0.05, U-test; Fig. 4B, gray lines). All the features that consistently differed between the two cell types 531 

exhibited larger SD values for PV cells, compared to PYR (Fig. 4B, black lines). The median SDs for all 532 

features were lower for PYR (0.34 [0.16 0.47]) compared to PV cells (0.53 [0.3 0.6]; p=1.9x10-4, Wilcoxon 533 

test). The higher intra-unit variability for PV cells indicates a common phenomenon of the spatial 534 

features that is identified specifically by chunking. 535 

 536 
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Features based exclusively on spatial information allow accurate classification of PYR and PV cells 537 

To determine whether the differences between the spatial distribution of the extracellular signals from 538 

PYR and PV cells are only correlative or indicative, we conducted a training and evaluation process. The 539 

process was carried in the same manner as for the waveform-based and spike-timing features. Using the 540 

mean waveforms, the median [IQR] AUC was 0.83 [0.8 0.85] (p=3.8x10-10, Wilcoxon test; Fig. 5). The 541 

performance of the spatial models improved when chunking was applied: chunking consistently 542 

increased the performance for all tested chunk sizes (25-1,600 spikes: p<1.45x10-9, Wilcoxon test; Fig. 543 

5A). Upon chunking to 1,600-spike chunks, the AUC increased by 9.6% compared to the no-chunking 544 

AUC. The AUC increased monotonically for progressively smaller chunk sizes, achieving a value of 0.963 545 

[0.949 0.975] for 25-spike chunks (16.3 [13.9 19.6] % increase; Fig. 5B). We did not test smaller chunk 546 

sizes. Therefore, results reported from this point onwards are based on the best model, using 25-spike 547 

chunks. While the performance of the spatial models was lower than the performance of waveform-548 

based or spike-timing models (p<6.6x10-6 for both, two-tailed Wilcoxon test), the results indicate that 549 

PYR and PV cells can be accurately differentiated based on purely spatial features. On their own, spatial 550 

properties provide a completely new approach to cell type classification. 551 

To assess the contribution of every spatial feature and family of features, we analyzed SHAP values. 552 

We found that feature importance was not uniform (Fig. 5C). Specifically, the highest importance was 553 

attributed to features derived from the FMC events (median [IQR] over all 50 instantiations: FMC-Time-554 

lag-SS: 0.094 [0.087 0.1] and FMC-Time-lag-SD: 0.093 [0.086 0.099]; p<0.001 for both, permutation test; 555 

Fig. 5C). The feature families differed in the contribution to the prediction (p<1.7x10-29, Kruskal-Wallis 556 

test). Features of the value-based family exhibited the lowest summed importance values (0.028 [0.021 557 

0.036]), while the two other families reached higher values (time-based: 0.25 [0.23 0.27], graph-based: 558 

0.11 [0.1 0.13], p=2.6x10-8 for both, Kruskal-Wallis test corrected for multiple comparisons). The 559 

importance of the time-based features was the largest (time-based compared to graph-based: p=2.6x10-560 
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8). The distribution of the six most important features is shown in Extended Data Fig. 5-1. The feature 561 

importance analysis suggests that features agnostic to the physical distance between channels and 562 

features that do consider spatial locations make non-overlapping contributions to classification. 563 

Moreover, the usage of multiple features derived from the same event, the FMC, is beneficial. 564 

 565 

Spatial models generalize poorer than waveform models but better than spike-timing models 566 

In the tagged dataset, units were recorded from both CA1 and neocortex, allowing to test inter-region 567 

generalization. To quantify similarities between regions, we determined the performance of models 568 

trained using data from a single region on one test set from the training region, and on another test set 569 

from the non-trained-upon region. Training on either CA1 data or neocortical data, all models 570 

performed above chance level when tested on both the CA1 test set and the neocortical test set 571 

(p<7.5x10-10 for all comparisons, Wilcoxon test; Fig. 6A, Extended Data Fig. 6-1). Specifically, spatial 572 

models trained on CA1 data reached median [IQR] AUC of 0.966 [0.934, 0.979] when tested on CA1 data 573 

and 0.83 [0.805 0.858] when tested on neocortical data. Complimentarily, when trained on neocortical 574 

data, spatial models reached an AUC of 0.923 [0.833 1] on the neocortical test set, and an AUC of 0.893 575 

[0.86 0.918] on the CA1 test set. Comparing AUCs of the non-trained-upon region, performance was 576 

lower for the spike-timing models compared to the waveform-based models (p<2.2x10-16 for both 577 

comparisons, Kruskal-Wallis test corrected for multiple comparisons; Fig. 6A). Likewise, performance 578 

was lower for the spike-timing models, compared to the spatial models (p<0.005 for both comparisons; 579 

Fig. 6A). Thus, while all modalities generalize from CA1 to neocortex and from neocortex to CA1, 580 

waveform-based models allow the best performance whereas spike-timing models perform the worst. 581 

Above-chance performance on the test set of the non-trained-upon region does not guarantee perfect 582 

generalization. To quantify generalization, we defined a “generalization error” as the relative decrease 583 

when comparing performance on the test set of the training region and performance on the test set of 584 
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the non-trained-upon region. The generalization error was consistently above zero for spatial models 585 

trained on data from either region, and for CA1-trained spike-timing models (p<0.05 for all three 586 

comparisons, Wilcoxon test; Fig. 6B). For both training sets, waveform-based models showed lower 587 

errors than spatial models (p<0.05 for both comparisons, Kruskal-Wallis test corrected for multiple 588 

comparisons; Fig. 6C). In addition, for the CA1-trained models, the generalization error of the spatial 589 

models was lower than that of the spike-timing models (p<6.7x10-6). Thus, spatial models generalize 590 

better than spike-timing models, but worse than waveform-based models, in particular when trained on 591 

CA1 data. 592 

Finally, to determine which spatial features are most important for classification in every region, we 593 

computed SHAP values for spatial models trained on data from a single region. Despite some differences 594 

in specific values, the six features that made the largest contributions were the same for models trained 595 

on CA1 data (Extended Data Fig. 6-2A) and for models trained on neocortical data (Fig. 6-2B; see also 596 

Fig. 5C). Hence, the determinants for the predictions of the spatial models are similar in neocortical and 597 

CA1 data.  598 
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Discussion 599 

 600 

Using optically-tagged high-density recordings from hippocampal region CA1 and neocortex of freely-601 

moving mice, we found that spiking of PYR and PV cells was associated with different spatiotemporal 602 

distributions of extracellular voltage. Compared to PV cell spikes, PYR spikes exhibited higher spatial 603 

synchrony at the beginning of the spike and lower synchrony at the trough. Together, the spatial 604 

features derived from the extracellular voltage distributions allowed accurate classification of PYR and 605 

PV cells. 606 

 607 

Differences in the spatial distribution of extracellular voltages during spikes 608 

Although the contribution of spatial information to classification tasks has been explored before 609 

(Buccino et al., 2018; Jia et al., 2019), previous work did not separate spatial information from other 610 

waveform-based properties. Utilizing an event-based delta transformation, we derived spatial features 611 

devoid of single-channel waveform information. The accurate classification based on spatial features is 612 

tantamount to spatiotemporal differences in the extracellular voltage distribution, and is consistent with 613 

morphological differences in the dendro-somatic and axonal organization of PYR and PV cells. In CA1, PV 614 

basket cell axons form a diverse horizontal network while most dendrites extend vertically (Freund and 615 

Buzsáki, 1996; Klausberger et al., 2003). The dendritic trees of PYR also extend vertically, but are more 616 

polarized (Bannister and Larkman, 1995; Spruston, 2008). The extracellular expression of intracellular 617 

signals has been studied theoretically (Rall, 1962) and modeled for reconstructed morphologies (Holt 618 

and Koch, 1999; Gold et al., 2006; Schomburg et al., 2012; Lindén et al., 2014; Bestel et al., 2021). Even 619 

with limited spatial sampling, the present results provide direct experimental evidence for a unique 620 

mapping between cell type and the spatial distribution of extracellular potentials. The results should be 621 
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construed as lower bounds, since higher density or three-dimensional sampling may allow further 622 

improvement. 623 

Among spatial features, the dispersion of the first median crossing (FMC) event between recording 624 

sites made the highest contribution to the prediction. The FMC is a putative extracellular analogue of 625 

the initial depolarization phase at the recording site. Thus, the lower inter-electrode variance of FMC 626 

among PYR compared to PV cells indicates higher spatial synchrony at the beginning of the spike. This 627 

observation is consistent with known morphological and electrotonic differences between the proximal 628 

dendrites of PYR and PV cells. Since the probes were always inserted perpendicularly to CA1 str. 629 

pyramidale, the vertical dendritic tree of both PYR and PV cells was parallel to the extracellular electrode 630 

arrays. In CA1, PYR have thick apical dendrites extending for up to 250 µm (1.6-2.5 µm in diameter), 631 

whereas PV cell dendrites in str. pyramidale are thinner (1.3-1.7 µm in diameter; Gulyás et al., 1999; 632 

Andersen et al., 2007). The higher FMC synchrony of PYR spikes is consistent with lower axial resistance 633 

of the thicker proximal PYR dendrites, yielding synchronized somatic and dendritic potentials. 634 

The second event that showed differences in temporal dispersion was the maximal negativity (NEG), 635 

which corresponds to a point between the peak of the derivative and the peak of membrane potential 636 

during the spike (Henze et al., 2000; Pettersen and Einevoll, 2008). During NEG, spatial synchrony 637 

reverses, being higher for PV compared to PYR. The narrower waveforms of PV cells are associated with 638 

a higher concentration of voltage-gated K+ (Kv) channels, compared to PYR (Bean, 2007). In neuronal 639 

models with passive dendrites and when membrane time constants are relatively slow, membrane 640 

resistance has little effect on spike shape (Pettersen and Einevoll, 2008). However, since active 641 

conductance affects spike shape (Martina and Jonas, 1997), the differences in synchrony during the NEG 642 

event may result from distinct spatial gradients of Kv channels in CA1 PYR and PV basket cells. In PYR, 643 

there is rapid decrease in the density of Kv channels on dendrites farther from the soma (Johnston et al., 644 

2000), whereas the decrease for basket cells is more moderate (Hu et al., 2010). Kv channels open at 645 
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depolarization, initiating repolarization and late hyperpolarization and in turn, govern the frequency and 646 

the width of the spikes (Pongs, 1999). The more uniform spatial density of Kv channels in PV cells 647 

compared to PYR may synchronize the extracellular signals generated by the different cellular 648 

compartments. 649 

The spatial features exhibit lower intra-unit variability of PYR, compared to PV cells. The difference 650 

between the PYR and PV variability contributed to classification. The excitatory input of PYR in CA1 651 

originates mainly from upstream regions (e.g., CA3 and entorhinal cortex; Andersen et al., 2007), 652 

whereas CA1 PV cells are mainly innervated by local PYR (Freund and Buzsáki, 1996). Thus, a possible 653 

source for the difference in intra-unit variability is the distinct sources of excitation of PYR and PV cells.  654 

 655 

Differences in spike waveform and spike-timing 656 

Compared to basket cells, neocortical and CA1 PYR have wider spikes (Simons, 1978; Connors et al., 657 

1982; Kawaguchi and Hama, 1988; Contreras 2004), lower firing rates (Kawaguchi et al., 1987), and an 658 

increased burst propensity (Kandel and Spencer, 1961; Ranck, 1973; Harris et al., 2001). Indeed, we 659 

found that waveform width (e.g., TTP-duration), burstiness (e.g., Uniform-distance), and firing rate, all 660 

differ between PYR and PV cells. Furthermore, both TTP-duration in the waveform models, and the 661 

Uniform-distance in the spike-timing models, contributed to the prediction. The importance of 662 

waveform width properties is in line with studies that used width-related features to differentiate 663 

between PYR and interneurons (Frank et al., 2001; Cardin et al., 2009; Stark et al., 2013). Similarly, the 664 

importance of burstiness and firing rate is consistent with prior work (Connors and Gutnick, 1990; Taira 665 

and Georgopoulos, 1993). The long-term ACH, which was not used before for classification, held 666 

informative value, consistent with distinct low frequency rhythmic activity of PYR and PV cells (e.g., 667 

theta; Csicsvari et al., 1999; Buzsáki, 2002; Czurkó et al., 2011). 668 

 669 
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Chunking 670 

When discussing the extracellular waveform of a neuron, many studies refer to the mean waveform 671 

(e.g., Trainito et al., 2019; Sun et al., 2021). To improve the performance of the classification models, we 672 

exploited the variability of spike waveforms and timing recorded from a single cell using chunking, 673 

increasing the number of samples at the possible cost of increased noise. The chunking method as 674 

implemented here was agnostic to two pieces of information. First, spikes were randomly assigned to 675 

chunks, ignoring possible time-related changes that may be constructive. Second, the relation of chunks 676 

to the same unit was only partially considered, and additional “chunk statistics” may be extracted. The 677 

statistics extracted from the distribution of feature values over chunks provide limited consideration of 678 

the other chunks. Consequently, the present implementation does not allow classification of all the 679 

chunks of a specific unit as a whole. Hence, our results form a lower bound for the improvement to be 680 

gained from chunking. More complex models may capitalize on time-dependent differences and 681 

dependencies between the samples. Modifying chunk size inherently results in a tradeoff between the 682 

number of samples and the noise. Spatial and waveform-based models benefited the most from smaller 683 

chunks, while spike-timing models benefited from larger chunk sizes. The higher sensitivity of spike-684 

timing models to noise in small chunks is consistent with the discrete nature of the spike trains, because 685 

ACHs are sparse when the number of spikes is small. 686 

 687 

Inter-region differences 688 

Waveform models yielded near-perfect classification of data from the non-trained-upon region for 689 

both training regions, in line with similar waveform widths of PYR and PV cells in neocortex and CA1 690 

(McCormick et al., 1985; Kawaguchi and Hama, 1988). Yet, the generalization of waveform models was 691 

not perfect, and is not expected to be universal: in the primate, pyramidal tract PYR exhibit narrow 692 

spikes (Vigneswaran et al., 2011; Lemon et al., 2021). CA1-trained spike-timing and spatial models 693 
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exhibited decreased performance when tested on neocortical data compared to CA1 data, with spatial 694 

models generalizing better than spike-timing models. The poor generalization observed for the spike-695 

timing models is consistent with the fact that neocortical PYR are less likely to exhibit bursts, compared 696 

to CA1 PYR (McCormick et al., 1985; Lacaille et al., 1987). The intermediate generalization of the spatial 697 

models may correspond to inter-region differences in cellular morphology, ion channel distributions, or 698 

other cellular-network properties. The synaptic and intracellular events that occur just before and 699 

during the spike may affect the spatial distribution of the signal (Zador et al., 1995; Hagen et al., 2016, 700 

2017). Hence, even morphologically identical cells with the exact same compartmental distribution of 701 

ion channels are expected to show different spatial distributions of extracellular potentials when 702 

embedded in distinct networks. 703 

 704 

Limitations and applications 705 

There are a few notable limitations to this work. First, cell type classification based on spatial features 706 

requires sampling the extracellular space over multiple points. Here, we employed a fixed electrode 707 

configuration with 20 μm vertical spacing, and application to data recorded using other configurations 708 

may require modifications. Second, expanding the duration of the sampled spikes beyond 1.6 ms (32 709 

samples at 20 kHz) may increase the performance of spatial-based models. Third, while several models 710 

yielded near-perfect performance, focusing strictly on mice does not warrant generalization to 711 

homological brain regions in other animals. 712 

Our results suggest several possible applications. First, the concept of chunking combined with a 713 

majority vote can be used in real-time, allowing to update classification outcomes online. Using the 714 

chunking and voting approach, there is no need to rerun the entire model whenever a new piece of data 715 

is collected. Instead, every time a predetermined number of spikes is gathered, another vote can be 716 
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added to the prediction. Second, classification based strictly on spike-timing can be used when 717 

waveform information is unavailable, or for real-time applications. 718 

 719 

Future directions 720 

To identify the cellular-network origin of the spatiotemporal differences in synchrony between PYR 721 

and PV cells, targeted experiments may be conducted. We hypothesize that the higher intra-unit 722 

variability observed for PV cells compared to PYR may reflect distinct connectivity patterns. The 723 

excitatory input of PYR in CA1 originates mainly from upstream regions (e.g., CA3 and entorhinal cortex; 724 

Andersen et al., 2007), whereas CA1 PV cells are more likely to be innervated by local PYR (Freund and 725 

Buzsáki, 1996). The hypothesis may be tested using somatic opsins (e.g., Shemesh et al., 2017; Chen et 726 

al., 2018; Forli et al., 2021). The spatiotemporal distribution of extracellular potentials during spikes 727 

generated via somatic activation can be compared to natural spiking, generated by integrating 728 

excitatory postsynaptic potentials impinging mainly on the dendrites. More consistent spatiotemporal 729 

synchrony achieved for optically-induced spikes will provide direct evidence that input variability may 730 

lead to more variability in the spatiotemporal synchrony. 731 

In the future, other spatial features may be used to increase classification performance. We showed 732 

that the cross-validated classification of PYR and PV cells is already near-perfect when based on 733 

waveforms alone, but other cell types may not be accurately distinguished using features derived from a 734 

single channel. For instance, compared to PV cells, somatostatin interneurons have lower firing rates 735 

and broader spikes (Ma et al., 2010; Royer et al., 2012; Veit et al., 2017). Distinguishing between 736 

multiple cell types using extracellular data may benefit from using spatial information.  737 
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Tables 963 

 964 

Feature Family Description PYR

median [IQR] 

PV

median 

[IQR] 

Effect 

Size 

(Aw
1) 

Cell type 

p-value2 

 

SHAP

(p-value)3 

TTP4- 

duration 

Waveform The duration between 

the trough (maximal 

negativity) and the peak 

(maximal positivity) [ms] 

0.77

[0.76 0.77] 

0.29

[0.25 0.35] 

0.98 5.9x10-58

 

0.25 

(0.001) 

TTP- 

magnitude 

The difference between 

the trough and the peak 

[AU]5 

1.4

[1.4 1.5] 

1.3

[1.2 1.3] 

0.97 3.7x10-48

 

0.11 

(0.003) 

FWHM6 The duration in which 

the value is at least -0.5 

(i.e., half of the trough) 

[ms] 

0.21

[0.2 0.23] 

0.16

[0.15 0.18] 

0.89 3.7x10-34

 

0.005 

(0.59) 

Rise- 

coefficient 

A straight line connects 

the trough and the last 

sample. The coefficient is 

the time from the trough 

to the point where the 

absolute distance from 

the line is maximal [ms] 

0.29

[0.26 0.32] 

0.24

[0.21 0.26] 

0.80 2.2x10-21

 

0.005 

(0.99) 
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Max-speed First time 

derivative7 

The duration after the 

trough, for which the 

spike maintains the same 

change rate (derivative) 

[ms] 

0.19

[0.14 0.26] 

0.14

[0.13 0.17] 

0.69 3.4x10-9

 

0.011 

(0.41) 

Break- 

measure 

Second 

time 

derivative7 

The sum of the values of 

the second derivative 

just before the trough 

(0.3 to 0.08 ms before 

the trough) [10-1 *AU] 

-0.67

[-0.76 -0.56] 

-0.58

[-0.7 -0.49] 

 

0.64 7.9x10-6

 

0.003 

(0.84) 

Smile-cry The sum of the values of 

the second derivative at 

the end of the spike 

(0.26 to 0.76 ms from 

the trough) [10-2 *AU] 

-1.2

[-1.4 -1.1] 

-0.3

[-0.9 -0.1] 

0.89 5.7x10-35

 

0.013 

(0.044) 

Acceleration The sum of the squared 

values of the second 

derivative just after the 

trough (0.08 to 0.25 ms 

after the trough) [10-6 

*AU2] 

9

[5 14] 

91

[49 139] 

0.97 6.8x10-49

 

0.12 

(0.002) 

Table 1. Waveform-based features 965 

 966 

1 Aw ranges from 0.5 (no difference) to 1 (non-overlapping distributions). 967 
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2 Mann-Whitney U-test. 968 

3 Median Shapley additive explanations (SHAP) values based on 50-spike chunks, indicating feature 969 

importance. Parentheses, p-values based on a one-tailed shuffle test.  970 

4 Trough-to-peak. 971 

5 The waveforms are scaled to the [-1 1] range. Thus, while the original units are µV, here we use 972 

arbitrary units (AU). 973 

6 Full-width at half-maximum 974 

7 Derivatives were computed numerically as the difference between every two adjacent samples.975 
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Feature Family Description PYR

median [IQR] 

PV

median 

[IQR] 

Effect 

Size 

(Aw
1) 

Cell type

p-value2 

 

SHAP

(p-value)3 

Uniform- 

distance 

High 

frequency 

(0-50 ms)4 

The mean distance between 

the CDF of the ACH and the 

CDF of a uniform 

distribution 

0.12

[0.09 0.16] 

0.03

[0.02 0.04] 

0.95 1.6x10-44

 

0.14 

(0.002) 

DKL-Short The DKL between the PDF of 

the ACH and the PDF of a 

uniform distribution 

0.25

[0.17 0.34] 

0.058

[0.037 0.079] 

0.95 2.2x10-44

 

0.025 

(0.36) 

Rise-time The duration in which the 

values in the CDF of the ACH 

are above a threshold of 1/e 

[ms] 

11.1

[9.4 13.7] 

19.3

[17.8 20.6] 

0.88 4.3x10-33

 

0.031 

(0.25) 

Jump- 

index 

Low 

frequency 

(50-1,000 

ms)4 

The mean distance between 

the CDF of the ACH and the 

CDF of a uniform 

distribution 

0.067

[0.044 0.088] 

0.016

[0.0095 0.024] 

 

 

0.92 9.3x10-39

 

0.029 

(0.31) 

DKL-Long The DKL between the PDF of 

the ACH and the PDF of a 

uniform distribution 

0.069

[0.032 0.15] 

0.0039

[0.0017 0.012] 

0.89 6.1x10-35

 

0.19 

(0.001) 

PSD- 

center 

Wide-band 

(0-1,000 

The centroid of the power 

spectral density (PSD), 

37

[33 42] 

31

[26 37] 

0.65 2.8x10-6

 

0.016 

(0.56) 
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ms) namely the squared FFT of 

the ACH [Hz] 

PSD’- 

center 

The centroid of the 

derivative5 of the PSD with 

respect to frequency [Hz] 

23

[19 29] 

21

[18 27] 

 

0.57 0.012

 

0.009 

(0.83) 

Firing-rate The average firing rate 

[spk/s] 

0.69

[0.35 1.47] 

8.95

[3.39 16.35] 

0.93 1x10-40

 

0.077 

(0.038) 

Table 2. Spike-timing features 976 

 977 

1 Aw ranges from 0.5 (no difference) to 1 (non-overlapping distributions). 978 

2 Mann-Whitney U-test. 979 

3 Median Shapley additive explanations (SHAP) values based on 1,600-spike chunks, indicating feature 980 

importance. Parentheses, p-values based on a one-tailed shuffle test. 981 

4 Most high-frequency and low-frequency features are based on distributions and therefore hold no 982 

units. 983 

5 Derivatives were computed numerically as the difference between every two adjacent samples.984 
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 985 

Feature Family Description Event PYR

median [IQR] 

PV

median [IQR] 

Effect 

Size 

(Aw
1) 

Cell type

p-value2 

 

SHAP

(p-value)3 

Time-lag-

SS4 

 

Time-

based5 

The mean SS 

of the time 

offsets of the 

event 

[103*µs2] 

FMC 0.44

[0.13 1.39] 

3.33

[0.49 12.02] 

0.74 6.47x10-14 0.094

(0.001) 

NEG 0.34

[0.1 1.1] 

0.16

[0.05 0.35] 

0.64 7.04x10-6 0.008

(0.32) 

SMC 1.9

[0.77 3.45]  

1.69

[0.68 3.48] 

0.51 0.34 0.046

(0.015) 

Time-lag-

SD 

 

The SD of the 

time offsets of 

the event [µs] 

FMC 15.9

[8.8 26.3] 

40.6

[17.4 86.3] 

0.72 2.3x10-12 0.093

(0.001) 

NEG 13.5

[7.7 23.5]  

9.4

[5.4 13.3] 

0.63 3.44x10-5 0.009

(0.30) 

SMC 26

[18.8 34.3]  

24.1

[15.6 38.9] 

0.50 0.47 0.052

(0.006) 

Average-

weight 

Graph-

based 

The average 

edge weight in 

the graph 

[mm/s] 

FMC 2455

[1366 3509] 

1206

[684 2577] 

0.68 1.65x10-8 0.038

(0.027) 

NEG 2724

[1678 4269] 

3633

[2173 5387] 

0.61 3.13x10-4 0.007

(0.31) 

SMC 1844 2034 0.51 0.34 0.008



Spatiotemporal extracellular potentials  Sukman and Stark, 2022  

52 

[1232 2674] [1099 2947] (0.31)

Longest- 

path 

The sum of 

weights in the 

longest path in 

the graph 

[mm/s] 

FMC 6722

[3581 11514] 

4909

[2417 9945] 

0.58 0.0053 0.014

(0.18) 

NEG 8103

[4200 14436] 

11517

[4923 16349] 

0.55 0.06 0.006

(0.33) 

SMC 6050

[3269 11115] 

6888

[3237 11056] 

0.51 0.33 0.013

(0.21) 

Shortest-

path 

The sum of 

weights in the 

shortest path 

in the graph 

[mm/s] 

FMC 1049

[657 1619] 

494

[267 928] 

0.74 1.04x10-13 0.068

(0.001) 

NEG 1071

[714 1754] 

1607

[916 2572] 

0.63 1.4x10-5 0.006

(0.33) 

SMC 584

[426 872] 

701

[409 1024] 

0.55 0.08 0.008

(0.30) 

SPD- Count Value-

based6 

The number of 

values that 

crossed 0.5 

- 2

[1 3] 

2

[1 3] 

0.55 0.06 0.007

(0.17) 

SPD-SD The SD of the 

vector 

- 0.30

[0.28 0.33]  

0.29

[0.27 0.31] 

0.65 3.02x10-6 0.008

(0.32) 

SPD-Area The AUC7 - 1.95

[1.45 2.54]  

2.02

[1.64 2.44] 

0.52 0.29 0.016

(0.19) 

Table 3. Spatial features 986 

 987 
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1 Aw ranges from 0.5 (no difference) to 1 (non-overlapping distributions). 988 

2 Mann-Whitney U-test. 989 

3 Median Shapley additive explanations (SHAP) values based on 25-spike chunks, indicating feature 990 

importance. Parentheses, p-values based on a one-tailed shuffle test. 991 

4 Sum of squares 992 

5 Time offsets are relative to the main channel. 993 

6 Based on the vector of maximal negativity values for each channel, scaled to the [0 1] range. The 994 

features are based on counts and thus hold no units. 995 

7 The area under the curve of the count of channels vs. the threshold value.  996 
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Feature Event PYR SD (scaled)1 2 PV SD (scaled)1 2 Aw
3 P-value4 

Time-lag-SS 

 

FMC 0.065 [0.019 0.22] 0.67 [0.42 0.93] 0.90 8.9x10-37

NEG 0.033 [0.011 0.076] 0.037 [0.011 0.21] 0.56 0.022

SMC 0.15 [0.097 0.23] 0.51 [0.25 0.83] 0.83 1.1x10-25

Time-lag-SD 

 

FMC 0.19 [0.093 0.41] 0.80 [0.61 0.94] 0.90 1.3x10-35

NEG 0.19 [0.10 0.32] 0.23 [0.12 0.48] 0.56 0.02

SMC 0.32 [0.26 0.42] 0.70 [0.50 0.93] 0.85 1.6x10-27 

Average-weight FMC 0.61 [0.36 0.84] 0.61 [0.41 0.76] 0.50 0.46

NEG 0.43 [0.28 0.62] 0.48 [0.36 0.68] 0.57 0.016

SMC 0.54 [0.43 0.65] 0.57 [0.40 0.70] 0.53 0.2

Longest- path FMC 0.53 [0.31 0.81] 0.60 [0.43 0.86] 0.57 0.016

NEG 0.44 [0.29 0.68] 0.59 [0.37 0.76] 0.60 0.0015

SMC 0.52 [0.34 0.72] 0.55 [0.36 0.75] 0.52 0.22

Shortest-path FMC 0.48 [0.22 0.92] 0.45 [0.33 0.67] 0.50 0.47

NEG 0.37 [0.15 0.71] 0.59 [0.27 0.86] 0.65 7.2x10-5

SMC 0.40 [0.26 0.60] 0.43 [0.28 0.68] 0.54 0.097

SPD-Count - 0.069 [0 0.35] 0.15 [0.037 0.40] 0.60 0.0013

SPD-SD - 0.18 [0.12 0.24] 0.26 [0.19 0.30] 0.68 6.3x10-9

SPD-Area - 0.13 [0.10 0.18] 0.18 [0.15 0.24] 0.73 1.1x10-12

 Table 4. SD across chunks for spatial features 997 

 998 

1 Median [IQR]. 999 

2 Based on 25-spike chunks. 1000 

3 Aw ranges from 0.5 (no difference) to 1 (non-overlapping distributions). 1001 

4 Mann-Whitney U-test.  1002 
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Figure legends 1003 

 1004 

Figure 1. Pyramidal cells (PYR) and parvalbumin-immunoreactive (PV) interneurons are tagged in 1005 

freely-moving mice 1006 

A. Optical tagging of PV cells. a. Every PV::ChR2 mouse was chronically implanted with a four-1007 

fiber/four-shank/32-channel optoelectronic array in the neocortex (nCX). Optical stimuli were applied, in 1008 

separate sessions, in the nCX and in hippocampal region CA1. Peri-stimulus time histogram of the PV cell 1009 

(bottom), triggered by the onset of 50 ms light pulses applied on the optical fiber attached to the 1010 

recording shank (n=20; 33 µW). The unit is tagged as PV due to a robust firing rate increase during light 1011 

(gray) compared to no-light periods. ***: p<0.001, Poisson test. b. Wide-band (1-5,000 Hz) recordings 1012 

from four same-shank channels in CA1. Bottom, Spike trains of a PYR (purple) and the PV cell (green).  1013 

B. Connectivity-based tagging. Top, Mean (±SD) spike waveforms. For every unit, the channel that 1014 

exhibits the highest trough-to-peak magnitude is denoted the main channel (boxed). Middle, Auto-1015 

correlation histograms (ACH), showing burst spiking activity of the PYR (purple). Bottom, Cross-1016 

correlation histogram (CCH; black) between the spikes of the PYR and the optically-tagged PV cell. Gray, 1017 

monosynaptic window. The CCH is consistent with monosynaptic excitation of the PV cell by the 1018 

reference unit, tagging the reference unit as excitatory (PYR). ***: p<0.001, Poisson test. 1019 

C. Tagged dataset. Of the 512 units in the dataset, 411 (80.3%) are PYR, and 449 (87.7%) are from CA1. 1020 

 1021 

Figure 2. Waveform-based and spike-timing features allow near-perfect classification of PYR and PV 1022 

cells 1023 

A. Features extracted from the mean waveform of the main channel. Voltage values were scaled by 1024 

the absolute value at the maximal negativity, yielding arbitrary units (AU; the example units are the 1025 

same as in Fig. 1B). a. Trough-to-peak-duration (TTP-duration) feature, defined as the time between the 1026 
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maximal negativity and the ensuing maximal positivity b. Cumulative distribution function (CDF) of the 1027 

TTP-duration feature for the entire population (n=411 PYR, n=101 PV cells; no chunking). Here and in all 1028 

subsequent CDFs, horizontal lines represent 50%, vertical dashed lines indicate medians, and *** 1029 

corresponds to p<0.001, U-test. The filled circles represent values corresponding to the examples given 1030 

in a. The difference between PYR and PV cells indicates longer TTP durations for PYR, compared to PV 1031 

cells. 1032 

B. Waveform-based features allow near-perfect classification. Cross-validated random forest models 1033 

were trained using the waveform-based features (n=50 partitions). The chunking method yields 1034 

improved classification compared to no chunking. The areas under the receiver operator characteristic 1035 

(ROC) curves (AUCs) without chunking (blue) and with 50-spike chunks (orange) are higher than chance 1036 

level. ***: p<0.001, Wilcoxon test comparing to chance level, 0.5. Inset, Confusion matrices (no 1037 

chunking) based on different decision thresholds (top, 0.1; bottom, 0.9) show variability in prediction, 1038 

exemplifying the shortcomings of threshold-dependent metrics. 1039 

C. Features extracted from spike-timing. High-frequency features derived from single-sided short-term 1040 

(0-50 ms) ACHs. a. The Uniform-distance feature is defined as the average absolute difference between 1041 

the single-sided ACH and a straight line (the example units are the same as in Fig. 1B). b. Cumulative 1042 

distribution of the Uniform-distance feature for the entire population (no chunking). The larger Uniform-1043 

distance values for PYR indicate larger deviations from linear recovery for PYR, compared to PV cells. 1044 

D. Classification based on spike-timing features is not consistently improved by chunking. AUCs were 1045 

derived from ROC curves based on n=50 cross-validated random forest models. ROC curves for the test 1046 

data without chunking (blue) and with 1,600-spike chunks (orange) with performance above chance 1047 

level. All conventions are the same as in B. 1048 

See also Extended Data Figures 2-1 and 2-2. 1049 

 1050 
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Figure 3. Transforming multi-channel spike waveforms to event-based delta-like functions removes 1051 

all waveform-based information and allows extracting purely spatial features 1052 

A. The event-based delta transformation procedure, illustrated for the first median crossing (FMC) 1053 

event. a. The mean waveforms, with delta-like functions marking the FMCs. The transformation replaces 1054 

all voltage values with zeros, except for the event points, which are assigned the same value as the 1055 

trough. In gray are channels for which the magnitude of the TTP is below a predetermined threshold 1056 

(Materials and Methods). The main channels are boxed. b. Next, waveform-related information that 1057 

might be recovered by combining multiple delta-transformed events is removed. The delta-like 1058 

functions are scaled and centralized (arrowheads), placing the event of the main channel at the 1059 

midpoint (129th sample). 1060 

B. Left, The scaled waveform of the main channel of all units in the dataset before the transformation, 1061 

sorted for PYR and for PV separately by the time of the trough. Right, The same waveforms after event-1062 

based delta transformation. The transformation removes nearly all of the variability between units. 1063 

C. Cross-validated random forest models (n=50; no chunking) were trained using waveform-based 1064 

features extracted from the transformed spikes. The confusion matrix, based on a naive decision 1065 

threshold of 0.5, yields a constant prediction of one class. n.s., p>0.05, Wilcoxon test. Numbers in every 1066 

cell denote median [IQR]. Performance was quantified by the threshold-independent AUC. The 1067 

classification yields an AUC of exactly 0.5, corresponding to purely random prediction.  1068 

D. A time-based feature, FMC-Time-lag-SD, derived from the differences between the times of the 1069 

FMC event in different channels. The feature quantifies the temporal dispersion of the event, without 1070 

considering the actual positions of the recording electrodes. a. FMC-Time-lag-SD is defined as the SD of 1071 

the time differences between the FMC event of the main channel (vertical dotted lines) and the other 1072 

channels. In gray are ignored channels, for which the magnitude of the TTP was below a predetermined 1073 

threshold. b. Cumulative distribution of the FMC-Time-lag-SD feature for the entire population (411 PYR 1074 
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and 98 PV cells, no chunking). The smaller FMC-Time-lag-SD values of the PYR indicates higher 1075 

spatiotemporal synchrony for PYR, compared to PV cells. All conventions for the CDFs here and in 1076 

subsequent panels are the same as in Fig. 2A. 1077 

E. A graph-based feature, FMC-Average-weight, derived from the differences between the FMC event 1078 

time in different channels and the electrode locations. a. FMC-Average-weight is defined as the average 1079 

edge weight in the event graph. The event graph is a directed graph with vertices representing the 1080 

electrodes, and edges representing the transmission speed based on the timing of the events and the 1081 

location of the electrodes. Only channels that passed the threshold for the magnitude of the TTP were 1082 

considered. b. Cumulative distribution of the FMC-Average-weight feature (no chunking). The larger 1083 

values for PYR indicate higher transmission rates for PYR, compared to PV cells. 1084 

F. A value-based feature, SPD-Count, derived from spatial dispersion (SPD) of the maximal negativity 1085 

on every channel. a. SPD-Count is defined as the number of channels that reached at least 50% of the 1086 

maximal negativity of the main channel. b. Cumulative distribution of the SPD-Count feature (no 1087 

chunking). No consistent difference between the PYR and PV is observed, suggesting similar spatial 1088 

distributions of the scaled maximal negativity (p>0.05, U-test). 1089 

See also Extended Data Figure 3-1. 1090 

 1091 

Figure 4. The variance of spatial features over channels and across chunks is different for PYR and for 1092 

PV cells 1093 

A. Variance over channels differs between events and cell types. Compared to PYR, PV cells show 1094 

lower spatiotemporal spike synchrony (i.e., higher SD) during FMC. The relation reverses during the NEG 1095 

event. The SD of the second median crossing (SMC) event is not consistently different between PYR and 1096 

PV cells. n.s.: p>0.05, ***: p<0.001, U-test. For both PYR and PV cells, synchrony increases from the FMC 1097 
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to the NEG, and then decreases during the SMC. Lined *: p<0.05, ***: p<0.001, Kruskal-Wallis test, 1098 

corrected for multiple comparisons.  1099 

B. Variance across chunks differs between cell types. Every dot shows the SD value for a different 1100 

spatial feature, based on 25-spike chunks. Of 18 features, 13 (72%) differ in the SD values between the 1101 

cell type groups, with the SD being higher for PV cells (black lines: p<0.05, gray lines: p>0.05, U-test). 1102 

Comparing the median SDs of the 18 spatial features between the cell type groups, PV cells exhibit 1103 

higher SDs compared to PYR. Bars (error bars) represent medians (IQR) of the median feature values for 1104 

each cell type. ***: p<0.001, two-tailed Wilcoxon test. 1105 

See also Extended Data Figure 4-1. 1106 

 1107 

Figure 5. Features based exclusively on spatial information allow accurate classification of PYR and 1108 

PV cells 1109 

A. Classification based on spatial features is boosted by chunking. AUCs were derived from ROC curves 1110 

based on n=50 cross-validated random forest models. The AUC increases monotonically when chunk size 1111 

is reduced. Every boxplot shows median and interquartile range (IQR), whiskers extend for 1.5 times the 1112 

IQR in every direction, a plus indicates an outlier, and notches represent 95% confidence intervals based 1113 

on bootstrapping with 1,000 repetitions. The best performance (highest AUC) and largest improvement 1114 

compared to no-chunking (∞) is observed for 25-spike chunks. ***: p<0.001, Wilcoxon test. 1115 

B. Spatial features allow accurate classification. ROC curves for the test data without chunking (blue) 1116 

and with 25-spike chunks (orange). The AUCs are higher than chance level. All conventions are the same 1117 

as in Fig. 2B. 1118 

C. Feature importance analysis for spatial models with 25-spike chunks. Shapley additive explanations 1119 

(SHAP) values were used to assess the individual contribution of each feature to the prediction. The 1120 

dotted lines represent chance level importance values, based on models trained with shuffled PYR-PV 1121 
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labels. The features derived from the FMC event are associated with the highest SHAP values, indicating 1122 

that synchrony at the initial depolarization phase makes the highest contribution to classification 1123 

outcome. **: p<0.01, ***: p<0.001, one-tailed U-test. 1124 

See also Extended Data Figure 5-1. 1125 

 1126 

Figure 6. Spatial models generalize poorer than waveform models but better than spike-timing 1127 

models 1128 

A. Cross-validated random forest models (n=50) were trained for every modality on the CA1 (left, red) 1129 

or neocortex (nCX; right, gray) data, and tested separately on different data from CA1 and from nCX. 1130 

Conventions for boxplots here and in B are the same as in Fig. 5A. All models exhibit above-chance 1131 

performance. ***: p<0.001, Wilcoxon test. The performance of models on the non-trained-upon region 1132 

is highest for waveform-based models and lowest for spike-timing models. **: p<0.01; ***: p<0.001, 1133 

Kruskal-Wallis test corrected for multiple comparisons. 1134 

B. The decrease in performance upon generalization. Generalization error is defined here as the 1135 

difference between the AUC on the test set of the training region and the AUC on the test set of 1136 

the non-trained-upon region, divided by AUC on the test set of the training region. Spatial models 1137 

trained on either region, and spike-timing models trained on CA1 data, show generalization errors larger 1138 

than zero. n.s.: p>0.05; **: p<0.01; ***: p<0.001, Wilcoxon test. The dashed horizontal line represents 1139 

the zero-mark, i.e., same performance on CA1 and nCX. When trained on CA1 data (red), spatial models 1140 

generalize poorer than waveform models but better than spike-timing models. n.s.: p>0.05; *: p<0.05; 1141 

***: p<0.001, Kruskal-Wallis test corrected for multiple comparisons. 1142 

See also Extended Data Figures 6-1 and 6-2.  1143 
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Extended data figure legends 1144 

Extended Data Figure 2-1 1145 

Extended Data for Figure 2. Waveform-based feature interrelations 1146 

A. Rank (Spearman’s) correlations between waveform-based features, grouped by families. Most 1147 

correlations (26/28; 93%) differ from zero. Blank: p>0.05; *: p<0.05; **: p<0.01; ***: p<0.001, 1148 

permutation test. 1149 

B. Mutual information (MI) between waveform-based features. All pairs (28/28; 100%) exhibit MI 1150 

values that are higher than chance level. ***: p<0.001, permutation test. Inset, Scatter plot of the MI 1151 

values between pairs of features and the pairwise absolute rank correlation coefficients (CC) from panel 1152 

A with statistics for rank (Spearman’s) correlation. 1153 

 1154 

Extended Data Figure 2-2 1155 

Extended Data for Figure 2. Spike-timing feature interrelations 1156 

A. Rank correlations between the spike-timing features grouped by families. Most correlations (27/28; 1157 

96%) differ from zero. All conventions here and in B are the same as in Extended Data Fig. 2-1. 1158 

B. MI between spike-timing features. All pairs (28/28; 100%) exhibit MI values that are higher than 1159 

chance level. Inset, Scatter plot of the MI between pairs of features and the CCs from panel A. 1160 

 1161 

Extended Data Figure 3-1 1162 

Extended Data for Figure 3. Spatial feature interrelations 1163 

A. Correlations between the spatial features, grouped by families. 80% (122/153) of the feature pairs 1164 

exhibit correlations that differ from zero. All conventions here and in B are the same as in Extended Data 1165 

Fig. 2-1. 1166 
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B. MI between spatial features. Most pairs (126/153; 82%) exhibit MI values that are higher than 1167 

chance level. Inset, Scatter plot of the MI and the absolute CCs from panel A. 1168 

 1169 

Extended Data Figure 4-1 1170 

Extended Data for Figure 4. Time-lag-SS and Shortest-path features across events and cell types 1171 

A. Time-lag-SS features differ between events and cell types. Compared to PYR, PV cells show larger 1172 

feature values during FMC. The relation reverses during the NEG event. The values during the SMC event 1173 

are not consistently different between PYR and PV cells. For PV cells, feature values decrease from the 1174 

FMC to the NEG, and then increase during the SMC. For PYR, feature values increase between FMC and 1175 

SMC and between NEG and SMC. Here and in B, all conventions are the same as in Fig. 4A. 1176 

B. The graph-based Shortest-path feature differs between events and cell types. Compared to PYR, PV 1177 

cells exhibit smaller feature values during FMC. The relation reverses during the NEG event. The values 1178 

during the SMC event are not consistently different between PYR and PV cells. For PV cells, feature 1179 

values increase from the FMC to the NEG, and then decrease during the SMC. For PYR, feature values 1180 

decrease between FMC and SMC and between NEG and SMC. 1181 

 1182 

Extended Data Figure 5-1 1183 

Extended Data for Figure 5. Distribution of the six most important spatial features 1184 

A. Cumulative distributions of the FMC-Time-lag-SS feature calculated without chunking. Here and in 1185 

all subsequent CDFs, horizontal lines represent 50%, vertical dashed lines indicate medians. n.s.: p>0.05; 1186 

***: p<0.001, U-test. 1187 

B. Cumulative distributions of the FMC-Time-lag-SD feature. 1188 

C. Cumulative distributions of the FMC-Shortest-path feature. 1189 

D. Cumulative distributions of the SMC-Time-lag-SD feature. 1190 
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E. Cumulative distributions of the SMC-Time-lag-SS feature. 1191 

F. Cumulative distributions of the FMC-Average-weight feature. 1192 

 1193 

Extended Data Figure 6-1 1194 

Extended Data for Figure 6. Models of all modalities generalize between brain regions 1195 

A. Models based on waveform-based features (50-spike chunks) were trained on CA1 data (top) or on 1196 

neocortical data (bottom). The AUCs were calculated based on n=50 models. Performance of waveform-1197 

based models is above chance level when tested on either CA1 (left) or neocortical (right) samples. Here 1198 

and B and C, ***: p<0.001, Wilcoxon test. 1199 

B. Models based on spike-timing features (1,600-spike chunks) were trained on CA1 data (top) or on 1200 

neocortical data (bottom). Performance of spike-timing models is above chance level when tested on 1201 

either CA1 or neocortical samples. 1202 

C. Models based on spatial features (25-spike chunks) were trained on CA1 data (top) or on neocortical 1203 

data (bottom). Performance of spatial models is above chance level when tested on either CA1 or 1204 

neocortical samples. 1205 

 1206 

Extended Data Figure 6-2 1207 

Extended Data for Figure 6. Spatial feature importance indicates consistent characteristics across 1208 

regions 1209 

A. SHAP values for the spatial models with 25-spike chunks trained only on CA1 data. The six most 1210 

important features are the same as the six most important features in the analyses of models trained on 1211 

the data from both regions (Fig. 5C). 1212 

B. SHAP values for the spatial models with 25-spike chunks trained on nCX data. The SMC features are 1213 

the strongest determinants of the predictions for neocortical-trained models. The six most important 1214 
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features are the same as for the CA1-trained data (panel A) and as for the models trained on the data 1215 

from both regions (Fig. 5C). 1216 














