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Abstract Decision-making is an essential cognitive process by which we interact with the external world.33

However, attempts to understand the neural mechanisms of decision-making are limited by the current avail-34

able animal models and the technologies that can be applied to them. Here, we build on the renewed interest35

in using tree shrews (Tupaia Belangeri) in vision research and provide strong support for them as a model for36

studying visual perceptual decision-making. Tree shrews learned very quickly to perform a two-alternative37

forced choice contrast discrimination task, and they exhibited differences in response time distributions de-38

pending on the reward and punishment structure of the task. Specifically, they made occasional fast guesses39

when incorrect responses are punished by a constant increase in the interval between trials. This behavior40

was suppressed when faster incorrect responses were discouraged by longer inter-trial intervals. By fitting41

the behavioral data with two variants of racing diffusion decision models, we found that the between-trial42

delay affected decision-making by modulating the drift rate of a time accumulator. Our results thus pro-43

vide support for the existence of an internal process that is independent of the evidence accumulation in44

decision-making and lay a foundation for future mechanistic studies of perceptual decision-making using45

tree shrews.46

Significance Statement Despite decades of work in the field of decision-making, we still have no clear47

brain-wide model of how perceptual decisions are formed and executed. A major reason for this lack of48

understanding is the limited animal models in decision-making studies. Here, we have successfully es-49

tablished a rigorous perceptual decision-making paradigm in tree shrews, and evaluated their choice and50

response-time behaviors with both summary statistics and trial-level computational modeling. Our results51

suggest that an endogenously-driven decision process, in addition to standard stimulus-dependent evidence52

accumulation, is necessary for interpreting the observed behavior. Our study thus underscores the impor-53

tance of characterizing additional factors that affect decisions and encourages future investigations using54

tree shrews to reveal the neural mechanisms underlying these cognitive processes.55

Keywords Sequential Sampling Model; decision-making; tree shrew; Timed Racing Diffusion Model56
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1 Introduction57

Decision-making is a vital cognitive process, playing an important role in many brain functions such58

as categorization, learning, memory, and reasoning. Among different forms of decision-making, perceptual59

decision-making, where decisions are based on sensory stimuli, is a simple yet informative task that is60

particularly amenable to experimental studies. Visual stimuli are often used because the visual system is61

arguably the best studied sensory system, thus advantageous for understanding perceptual decision-making62

from sensation to action.63

Considering decision-making is a dynamic process with complex combinations of distinct underlying64

variables, researchers have frequently applied Sequential Sampling Models (SSMs) to interpret and decom-65

pose decision behaviors. These models assume that the evidence (i.e., a variable depending on the sensory66

stimulus strength) is accumulated through time, and a corresponding choice is made when the accumulated67

evidence passes a threshold. By defining these stochastic accumulation processes, SSMs can simulate deci-68

sions and response times (RTs) with the stimulus as the input. The discovery of “ramping neurons” during69

decisions in many brain regions provides neural evidence for these models (Horwitz and Newsome, 1999;70

Roitman and Shadlen, 2002; Mante et al., 2013; Ding and Gold, 2010). Despite the models’ effectiveness in71

a wide range of applications, variants of the SSM make different predictions regarding what decision vari-72

ables (bias, threshold, time perception, etc.) are involved and how they interact with each other (Ratcliff,73

1978; Usher and McClelland, 2001; Brown and Heathcote, 2005; Cisek et al., 2009). More importantly, the74

neural mechanisms of these variables and their interactions remain largely unknown, which typically require75

studies in animal models.76

Monkeys and rodents (mostly rats and mice) are commonly used in decision-making studies, with re-77

spective advantages and drawbacks. Monkeys are closely related to humans, but they are expensive and78

limited in availability, thus difficult to study or control individual differences. Furthermore, most mod-79

ern ”circuit-busting” opto- and chemo-genetic techniques are not yet routinely used in primates. On the80

other hand, recent use of rodents, especially mice, has significantly advanced our understanding of decision-81

making (e.g., Odoemene et al., 2018; Aguillon-Rodriguez et al., 2021; Ashwood et al., 2022). However,82

mice and rats are nocturnal animals with poor eyesight, making them less than ideal for visual tasks. In83

addition, rodents often learn visual tasks slowly (Urai et al., 2021; Aoki et al., 2017), costing both time and84

effort to obtain high quality data. Here, we use a different animal model - tree shrews (Tupaia Belangeri,85

Fig. 1A) for visual decision studies. Under the order of Scandentia, tree shrews are evolutionarily closer to86

primates than rodents are (Yao, 2017). They are diurnal, have an excellent acuity, and display visual system87

complexity similar to primates (Petry and Bickford, 2019). Earlier studies have shown that they could be88

reliably trained to perform visual (color, orientation, spatial frequency, temporal frequency, etc...) discrima-89

tion tasks (Casagrande and Diamond, 1974; Petry et al., 1984; Petry and Kelly, 1991; Callahan and Petry,90

2000; Mustafar et al., 2018). In addition, tree shrews are of lower cost, smaller, and have a faster repro-91

duction cycle than monkeys, making them more accessible. Finally, modern viral, genetic, and imaging92

techniques are being applied in tree shrews with much better success than in primates (Lee et al., 2016;93

Sedigh-Sarvestani et al., 2021; Li et al., 2017; Savier et al., 2021). Taken together, tree shrews have the po-94
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tential to advance the understanding of neural mechanisms underlying perceptual decision-making. In this95

study, we seek to establish a rigorous perceptual decision-making paradigm for tree shrews, and to char-96

acterize the decision-making features, including both response accuracy and response time, in this animal97

model quantitatively with both summary statistics and trial-level computational modeling.98

2 Methods99

2.1 Contrast Discrimination Task100

We trained in total of 9 (male = 7, female = 2) freely moving tree shrews to perform a two-alternative101

forced choice (2AFC) contrast discrimination task (Fig. 1C). At the beginning of each trial, a visual stimulus102

of two orthogonal overlapping alpha-transparent gabors appeared at the screen center to indicate that the tree103

shrew could lick the center port to initiate the trial. After initiation, the center stimulus disappeared, and104

two side gabor patches were presented immediately on the left and right of the screen. Tree shrews needed105

to choose the side with a higher contrast by licking the corresponding lick port. This self-initiation design106

helped to ensure that the animals were focused from the beginning of each trial and allowed us to record107

accurate RTs, which were calculated as the duration between the stimulus (2 side gabors) appearance and108

the side-port lick detection. Once a choice lick was detected, the stimulus would disappear from the screen.109

We adopted a free-response structure that if no choice was detected, the stimulus would be on for an infinite110

amount of time.111

Inter-Trial Intervals (ITIs) were randomly drawn from a truncated normal distribution with a mean of112

0.6, a standard deviation of 1, a lower bound of 0.5, and an upper bound of 0.7 (unit: sec). For correct113

responses, liquid reward (50% grape juice) was given right after the animals reported their choices. The114

reward volume was determined by the duration of the valve opening, which was randomly drawn from a115

truncated normal distribution with a mean of 0.1, a standard deviation of 0.06, a lower bound of 0.2, and an116

upper bound of 0.4 (unit: sec). The speed of liquid flow was 150 µL/s. The average reward volume in one117

correct trial was 33 µL (0.22 s). The random ITI and random reward duration helped the animals to stay118

engaged in the task.119

For incorrect responses, 2 protocols were used to generate a delay as a punishment. (1) A fixed delay120

of 4 s was used in the first group of tree shrews for all incorrect responses. If the animal licked the center121

port during the delay (i.e. blank screen licks; detected in 0.8 s periods), a penalty of 0.8 s was then added122

to the delay, with a maximum of 8 sec for the total delay. (2) An exponential decay function (Eq.1) was123

applied in the second group of animals to generate a between-trial delay based on the trial-level RT:124

T =
1

s
e−

RT−l

s , (1)125

where T is the between-trial delay, RT is the response time of the current incorrect trial, and l and s are the126

location and scale parameters, which shift and scale the function in the stimulus generation code. For all127

4



animals, we used l = 0.1, s = 1.7. For the blank screen lick penalty, 1.5 s was added for every center-port-128

lick, with the total delay being Max(T, tpassed + penalty), and no upper limit. To determine the potential129

effect of these two delay paradigms, we calculated the reward rate using the data of a representative animal130

from the first group of tree shrews (Eq.2): the response accuracy of each RT bin was fitted with a sigmoid131

function, which was then used to calculate the theoretical reward per unit time (pulse/s).132

RR(t) =
Acc(t)

Acc(t)× t+ (1−Acc(t)) × (t+Delay(t))
, (2)133

where RR(t) is the reward rate for a response time of t, Acc(t) is the response accuracy (i.e., ratio of134

correct choices) under this response time t obtained from the observed data, Delay(t) is the inter-trial delay135

for incorrect responses, which is 4 for the fixed-delay rule or follows the exponential decay function defined136

above (Eq.1) for the exponential-delay rule.137

2.2 Animal Training And Data Collection138

Tree shrews were first acclimated to the behavior box for 1-2 days. For most animals (7 out of 9), water139

restriction started at this stage of training (stage 1). For the other two animals, water restriction started a140

couple of days before acclimation. Two approaches of water restriction were used: 1) we gradually reduced141

their water intake from baseline (20 - 40 mL/day) to 5-10 mL/day by limiting the availability of drinking142

water; 2) we used citric acid (CA, Urai et al., 2021) water in their home cage to reduce water intake and143

gradually increased its concentration from 2% to 4%. The progress of water restriction depended on the144

animals’ weight loss, water-intake baseline, and tolerance, to make sure that they were motivated to stay145

focused on the task for at least 25 minutes per day, and at the same time, not experiencing any health146

issue (Weight ≥ 90% × Baseline). Depending on the animals’ acclimation and learning speed, the water147

restriction progress (2-7 days) could extend to stage 2 and even 3 before reaching a stable restriction level.148

During stage 1, a single gabor stimulus would be shown right above the center lick port. After the149

gabor appeared, the animals could lick the center port at any time to trigger a liquid reward (grape juice150

diluted with water in a 1:1 ratio). Each tree shrew was left in the behavior box to learn to use the center port151

for no more than 20 minutes every day for acclimation, but this stage usually took only 1 day ( 20-40 trials152

per day). Having learnt to get liquid reward from the center port, the animals progressed to the next stage.153

At stage 2, the contrast discrimination task was set up with contrast pairs of 1.0 (full contrast) vs 0.0 (zero154

contrast), i.e., a single side stimulus was shown. The goal of stage 2 was to train the animals to use the left155

and right lick ports. Liquid reward from the center port was gradually reduced to zero within about 50 trials.156

Animals usually perform 100-300 trials per day at this stage. Once they learned and had a stable correct rate157

of more than 75%, they progressed to stage 3. Note that most animals learned very fast and graduated both158

stages 1 and 2 within 2 days.159

At stage 3, we first gave the animals an easy condition by using contrast pairs of 1.0 vs 0.1, and160

gradually mixed in other pairs of smaller contrast differences, finally achieving the stimulus set we use in161

the formal data collection. During this stage of training, we also adjusted the ratio of easy (e.g., comparing162
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the highest and lowest contrast) and difficult (same or similar contrast) trials for each animal. By including163

sufficient easy trials and limiting the number of equal-contrast trials, we were able to keep the animals164

motivated to keep doing the task. For equal contrast trials, the correct answer was randomly assigned to165

left or right, so that the animals still had 50% chance to get a reward in these trials. At this stage, the166

animals performed 500-600 trials per day. Some animals could finish it within 30 minutes, while some167

of the others needed as long as 1 hour, especially when they produced large numbers of incorrect choices168

(giving rise to more penalty time) or they started to lose patience and focus (giving rise to more idling time).169

To control the frustration level, we would stop the training when the duration was over 1 hour. At this170

time, some animals ( 50%) also developed biased behavior by making most choices to the same side. We171

discouraged this behavior by automatically adjusting the probability of left/right trials depending on their172

real-time performance. For example, we calculated the proportion of choosing rightward in the previous173

10 trials, denoted as Pr. The probability of the next trial being rightward was 1 − Pr. This real-time bias174

correction quickly discouraged the biased behavior in the tree shrews.175

After the animals achieved a stable (3-5 consecutive days) overall accuracy ≥ 60% (at this time, the176

accuracy is expected to be lower because of the existence of equal contrast trials and other difficult trials), we177

collected data for consecutive days (500-600 trials per day) to reach at least 100 repeats for each condition178

of contrast discrimination. The data were first culled by applying a 3 standard deviation outlier removal on179

the Box-Cox transformed response time distribution in preprocessing. The remaining trials were used in180

further analysis.181

All animal procedures were performed in accordance with the University of Virginia animal care com-182

mittee’s regulations.183

2.3 Stimulus and Apparatus184

The experiment program was written in Python and the stimuli were generated and presented with the185

State Machine Interface Library for Experiments (SMILE, https://github.com/compmem/smile). The Gabor186

patch size was 28◦, and the spatial frequency was 0.2 cpd. The stimulus screen had a 1280×1024 resolution187

and 60Hz refresh rate, and was gamma-corrected. It was set at a distance of 15 cm from the animal. There188

were 6 levels of stimulus contrasts ranging from 0.08 to 0.99, which were evenly-spaced. All combinations189

of left and right contrasts are presented in a randomized order.190

The lick-detector circuit (adapted from: Marbach and Zador, 2017), and reward-valve control circuit191

(adapted from: https://bc-robotics.com/tutorials/controlling-a-solenoid-valve-with-arduino/) were controlled192

with an NI USB-6001 multifunction I/O device (https://www.ni.com/en-us/support/model.usb-6001.html).193

The Plexiglass behavior box was L: 40 cm×W: 22 cm×H: 20 cm with a transparent window on the front194

side to allow the animals to watch the screen.195
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2.4 Data Analysis and Models196

To test the relationship between RT and contrast difference, we fitted a mixed effect linear regression197

model with RT as the dependent variable, the absolute contrast difference between left and right stimuli198

as the independent variable, and individual animal as the group variable, using the statsmodels library in199

Python.200

We fitted the behavioral data with two sequential sampling decision-making models, the Timed Racing201

Diffusion Model (TRDM) and the Racing Diffusion Model (RDM), and compared their performance using202

a Bayesian approach. TRDM contains 3 independent accumulation processes, namely two evidence accu-203

mulators and one time accumulator (or “timer”), whereas RDM only has the two evidence accumulators204

(Fig. 3A& 3B). The probability density function (f(t)) and cumulative distribution function (F (t)) for each205

evidence or time accumulation process are defined by the inverse Gaussian (Wald) distribution in Eq.3:206

f(t|ρ, σ, α, t0) =
α

σ
√

2π(t− t0)3
exp

(

− [α− ρ(t− t0)]
2

2σ2(t− t0)

)

F (t|ρ, σ, α, t0) = Φ

(

ρ(t− t0)− α

σ
√
t− t0

)

+ exp

(

2αρ

σ2

)

· Φ
(

−ρ(t− t0) + α

σ
√
t− t0

)

,

(3)207

where t is the response time, ρ is the mean drift rate, σ is the within-trial variability of the drift rate, α is the208

threshold (which was fixed to 1.0), t0 is the non-decision time, Φ is the cumulative distribution function of209

a standard normal distribution(Heathcote, 2004; Hawkins and Heathcote, 2021).210

The mean drift rate (ρ) of each evidence accumulator was calculated using the following equation211

(Eq.4), taking into consideration both the stimulus difference and their total strength.212

ρl = v0 + vd ∗ (sl − sr) + vs ∗ (sl + sr)

ρr = v0 + vd ∗ (sr − sl) + vs ∗ (sl + sr),
(4)213

where ρl and ρr are the mean drift rate of the left and right evidence accumulators, v0 is the baseline drift214

rate, sl and sr are the contrasts of left and right stimuli, vd is the coefficient of the contrast difference term,215

vs is the coefficient of the contrast summation term (van Ravenzwaaij et al., 2020).216

The accumulators race against each other. If one of the evidence accumulators first reaches the thresh-217

old, a corresponding choice is made. If the time accumulator reaches the threshold first, one of the options218

will be chosen randomly with a partial dependence on which evidence is greater at that time point. This is219

done through a process controlled by a parameter γ, ranging from 0 to 1, with 1 being fully dependent on220

the evidence accumulated up until that point, and 0 being completely random regardless of the accumulated221

evidence. Other parameters of the model include ρt, ω and t0, as described in Table 1.222

To apply Bayesian inference, we first defined the “priors” - the belief of the true parameter values be-223

fore data observation - by assigning a probability distribution for each of the parameters based on previous224

experience (Table 1; Kirkpatrick et al., 2021). We then used the observed data to update the prior distribu-225

tions, in order to achieve a more constrained posterior distribution of what parameters could have generated226
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the observed data for each model. Posterior samples were generated with the differential evolution Markov227

chain Monte Carlo (DE-MCMC, Ter Braak, 2006; Turner and Sederberg, 2012; Turner et al., 2013) algo-228

rithm, which was shown to be computationally efficient. This was implemented by the RunDEMC library229

(https://github.com/compmem/RunDEMC). We set 10k (k is the number of parameters) parallel chains for230

200 iterations in the burn-in stage and 500 iterations to sample the posterior.231

Specifically, we apply a standard Metropolis–Hastings algorithm to accept or reject proposed samples232

from the posterior. Here, a new parameter proposal is evaluated by comparing its posterior probability with233

that of the current proposal, with the probability of accepting a new proposal:234

P (accept) =
P (D|θ′)P (θ′)

P (D|θ)P (θ)
, (5)235

where D represents the observed data, θ′ is the new proposal, θ is the current proposal, P (D|θ′) and P (D|θ)236

are the likelihoods calculated with Eq.6, and P (θ′) and P (θ) are the priors.237

To calculate the likelihood P (D|θ) of observing the data D given the parameters θ, we multiply the238

likelihoods of observing each choice and RT as determined by the model probability density function (PDF)239

defined by the parameters θ. For example, the PDF for observing a left response with a decision time t is240

defined by the following equation (Heathcote, 2004; Hawkins and Heathcote, 2021):241

PDFleft(t) = fE,left(t) (1− FE,right(t)) (1− FT (t)) + PT fT (t) (1− FE,left(t)) (1− FE,right(t))

PT = γFX(0) +
1

2
(1− γ)

X ∼ N

(

ρrt− ρlt,

√

2
(

ηc
√
t
)2

)

,

(6)242

where f(t) and F (t) are the density and distribution functions defined above, fE and FE are for the evidence243

accumulators, while fT and FT are for the time accumulator. FX is the cumulative distribution function244

for the random variable X, and X follows a normal distribution defined by the difference in evidence245

accumulator distributions. ρl and ρr are the mean drift rate for left and right evidence accumulators, ηc is246

the within-trial variability of the drift rate for the evidence accumulators.247

Finally, to compare the performance of the two models, we first calculated the Bayesian Information248

Criterion (BIC) values (Eq.7) of each model fitting result:249

BIC = kln(n)− 2ln
(

L(θ̂)
)

, (7)250

where k is the number of parameters, n is the number of data points, L(θ̂) is the maximum likelihood of251

the model’s fit to the data. Then we approximated the Bayes factor with BIC as in Eq.8 (Kass and Raftery,252

1995):253

BFij ≈ exp

(

−1

2
(BICi −BICj)

)

, (8)254

where BICi and BICj are BIC values for Model i (in this case the TRDM) and Model j (the RDM)) respec-255
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tively. BFi,j > 1 means evidence is in favor of Model i over Model j. BFi,j > 3, 20, 150, correspondingly256

ln(BFi,j) > 1, 3, 5, indicates positive, strong, very strong evidence for Model i over Model j, respectively257

(Lodewyckx et al., 2011).258

2.5 Code Accessibility259

Code for preprocessing and running TRDM/RDM models are included in the extended data.260

3 Results261

3.1 Tree shrews quickly learned to perform a contrast discrimination 2AFC task.262

We trained a total of 9 (male = 7, female = 2) tree shrews to perform a 2AFC contrast discrimination263

task (Fig. 1). The 2AFC design was chosen over other classic paradigms such as “Go/no-Go” tasks because264

it eliminates the asymmetry between responses for different options. Also, we designed the trials to be self-265

initiated and self-paced by the animals, in order to obtain precise response time (RT) data for comprehensive266

behavioral analysis. During training, freely moving tree shrews were first acclimated in the behavioral box267

with a single gabor stimulus appearing at the center or either side of the screen (Fig. 1B). After the animals268

learned the association between the stimulus and liquid reward, often within 1-2 days, two gabors of different269

contrasts were introduced with the higher contrast one indicating the location of the reward (Fig. 1C). All270

the tree shrews were able to learn the task and reach an accuracy greater than 75% for the easiest condition271

within 1 week (Fig. 1D). In fact, most of them reached 75% accuracy within 2 days. It is worth noting that,272

once the animals reached a good performance, the overall difficulty was increased progressively. In other273

words, the “easiest” condition often became more difficult in successive days. Yet, the animals’ performance274

was stably above 75%, indicating that they had learned the rule of the task, instead of the specific stimuli,275

within a very short period. These observations thus highlight the impressive learning capability of tree276

shrews and indicate that they can be a promising animal model in cognitive neuroscience research.277

3.2 Tree shrews showed different behaviors under two training schemes.278

In the first group of animals (n = 5; male = 4, female = 1), a fixed trial delay of 4 seconds was used279

to punish incorrect responses (Fig. 2A). All animals were able to learn the task. An increase in difficulty280

(i.e., a decrease of contrast difference between the two stimuli) induced an expected drop of response ac-281

curacy (Fig. 2B). However, task difficulty did not have a significant effect on the response time (RT) in282

correct trials (mixed effect linear regression, β = .008a, p = .125, Table 1-1), whereas the RT in incorrect283

trials increased with task difficulty (Fig. 2C, mixed effect linear regression, β = -.075b, p <.001). This284

result is different from previously reported RT trend in humans, monkeys, and mice (Philiastides et al.,285

2011; Dmochowski and Norcia, 2015; Roitman and Shadlen, 2002; Palmer et al., 2005; Jun et al., 2021;286
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Orsolic et al., 2021), where increasing task difficulty usually resulted in an increase in RT in correct tri-287

als. We examined the RT distribution of individual animals and saw a bimodal-like shape in most animals288

(n = 4 out of 5 ) in this group (e.g., Fig. 2D, Fig. 2-1), instead of the more common log-normal distri-289

bution (Ratcliff, 1978; Smith and Ratcliff, 2004). Furthermore, the first small peak of the RT distribution290

contained a similar proportion of correct and incorrect trials, while the second peak had many more correct291

than incorrect trials. This bimodal distribution suggested 2 possible modes in the behavioral responses, a292

“fast-guessing” mode of random performance and a slower mode where an animal was more “engaged” in293

the task.294

To discourage the animals from “fast guessing”, we employed an exponential decay trial delay for295

incorrect responses in the second group (n = 4; male = 3, female = 1) (Fig. 2E). The exponential decay296

delay would punish fast incorrect responses more than slow incorrect ones, at a more aggressive level than297

the fixed trial delay procedure (Fig. 2A & 2E). All animals in this group were again able to learn the task298

quickly (Fig. 2F & 2G). Notably, the overall RT was substantially slower compared to the fixed-delay299

group, indicating the effectiveness of the new trial delay paradigm. Furthermore, the RTs in correct trials300

showed a slightly increasing trend with task difficulty (mixed effect linear regression, β = -.021c, p = .001),301

while the effect on the incorrect RT became less prominent than for the fixed-delay group (mixed effect302

linear regression, β = -.046d, p = .014). When examining the RT distribution of individual animals, we saw303

one-peak log-normal distributions, similar to what was reported in other species, and a clear above-chance304

accuracy across the entire range (e.g., Fig. 2H, Fig. 2-2).These behavioral data thus demonstrate that the305

tree shrews responded to the two trial delay schemes with different behaviors.306

3.3 Non-evidence accumulation mechanism is crucial to interpreting tree shrew behaviors.307

The above behavioral data suggest the involvement of a process in addition to evidence collection308

during decision-making. One possibility is a time accumulation process where the animals had an internal309

time threshold on the task, and they would rush into a more or less random choice if the time threshold310

was reached before accumulating enough evidence to guide the choice. This time limit would be different311

under the two trial delay paradigms: shorter under fixed delay, thus leading to many fast guesses. To test the312

plausibility of this explanation, we turned to cognitive models of decision-making.313

We fitted two models, Racing Diffusion Model (RDM) and Timed Racing Diffusion Model (TRDM,314

Hawkins and Heathcote, 2021), to the data obtained from individual animals. In a 2AFC task, the RDM de-315

scribes 2 independent evidence accumulators racing against each other. When one of the accumulators first316

reaches the threshold, a corresponding choice is made (Fig. 3A).The TRDM has one additional accumulator317

that tracks time (Fig. 3B). If the time accumulator reaches the threshold before the evidence accumulators,318

a decision is made based on the current accumulated evidence with a certain probability γ. We fixed all the319

accumulation thresholds to be 1. A fast time accumulator was thus effectively equal to a short time limit as320

described above. The two models allowed us to test if an additional timing mechanism can better explain321

tree shrew decision behaviors.322
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We used a Bayesian approach for model fitting (Ter Braak, 2006; Turner and Sederberg, 2012; Turner et al.,323

2013), and then simulated choice and RT data with the best fitting parameters to visualize the goodness of324

fit. We found that the RDM captured the RT distribution of the exponential-delay group well, but failed325

to fit the fixed-delay group (Fig. 3C & 3D, top panels). On the other hand, the TRDM fitted well to both326

groups (Fig. 3C & 3D, bottom panels). To quantify their performance difference, we estimated the Bayes327

Factor (BF) of the two models for each animal (Fig. 3E). For animals in the fixed-delay group, the values328

of ln(BF) were extremely high, ranging from 45 to 1062, providing overwhelming support for the TRDM.329

These values were much higher than 5, which is a conventional threshold for “very strong” evidence for one330

model over the other in Bayesian modeling (Lodewyckx et al., 2011). For the exponential-delay group, the331

evidence favored the RDM for 3 out of the 4 tree shrews, although the magnitude of evidence was not nearly332

as strong (ln(BF ) ranging from -6 to 1). It should be noted that Bayes Factor in our estimation punishes333

complex models that have more parameters. As a result, despite the similar performance of the two models334

in fitting the exponential-delay group data, the RDM had the advantage of simplicity, thus leading to the335

winning BF.336

We then simulated choice and RT data with the best fitting parameters (Table 1-2 and 1-3) for each337

animal using the winning model, to visually check the goodness of fit. Figure 4 illustrates that the TRDM338

fit the data of the fixed-delay group well (Fig. 4A), and the RDM was able to reproduce the behavior of339

the exponential-delay group (Fig. 4D), for both the psychometric curves and the RT-contrast relationship.340

Consistent with the result in Figure 3, the TRDM was also able to fit the psychometric curves and the RT-341

contrast relationship for the exponential-delay group (Fig. 4C), similarly to the RDM, while the RDM failed342

to capture the RT-contrast relationship for the fixed-delay group (Fig. 4B). The fact that the behavior of343

both groups could be explained by the TRDM supported the involvement of the non-evidence-accumulation344

process during tree shrew visual decision making, and this process can be manipulated by applying different345

trial delay rules.346

The models allowed us to track down the generating mechanism of the simulated data, i.e., whether347

each decision was initiated by an evidence accumulator or the timer crossing the threshold. We separated348

the TRDM-simulated data for each animal according to the generating mechanism, and found the timer and349

evidence accumulators contributed to two separate RT peaks. Fig. 4-1 shows the comparison between sim-350

ulated data and observed data for an example tree shrew from the fixed-delay group (Fig. 2D). The results351

indicated that the fast RTs were largely generated by the timer (Fig. 4-1A). In addition, when examining352

the simulated RTs for correct choices generated by evidence accumulators only, they increased with the353

task difficulty (Fig. 4-1D), similar to what has been previously reported in humans, monkeys, and mice354

(Philiastides et al., 2011; Dmochowski and Norcia, 2015; Roitman and Shadlen, 2002; Palmer et al., 2005;355

Jun et al., 2021; Orsolic et al., 2021). These model results suggest that the tree shrews learned the visual356

decision-making task, and they had similar behaviors as other animals when “engaged” in the task. More-357

over, the timer-driven random choices explained the plateau of a non-perfect accuracy, even in the easiest358

conditions (Fig. 4-1C).359

Next, for each tree shrew, we quantified the percentage of timer-induced choices from the TRDM-360
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simulated data (Fig. 4E). As expected from the above analysis, all of the animals from the fixed-delay group361

showed many timer induced choices (ranging from 30% to 66%), while the value was near zero for every362

animal in the exponential-delay group. To understand what decision variables were altered by the change363

of delay rule, we examined the posterior distribution of the parameters in the TRDM. The posteriors of the364

timer-related parameters showed a general trend of higher mean drift rate for the time accumulator (ρt) and365

higher time drift rate variability (ηt) in the fixed-delay group than in the exponential-delay group (Fig. 4F366

& 4G). The two parameters work together to determine the accumulation speed of time during decision-367

making, with the fixed-delay group having faster timers. The model results therefore proposed a possible368

mechanism that the exponential delay worked by slowing down the time accumulation process in the tree369

shrews, which resulted in far fewer “timer-induced” fast responses with compromised accuracy, and more370

correct responses guided by the evidence accumulation process.371

4 Discussion372

In this study, we aimed to and succeeded in establishing a response-time paradigm of perceptual373

decision-making for tree shrews. The behavioral results showed that tree shrews are able to perform a374

contrast-discrimination perceptual decision task and generate informative choice and response time data.375

Model-based analyses suggest that, other than the choice-related evidence accumulation process, additional376

mechanisms, presumably mechanisms that keep track of time, are involved in the decision-making process377

depending on the specific design of trial delay due to incorrect responses. This new animal model will facil-378

itate future decision-making studies with fast learning, reliable behaviors, increased availability, and more379

modern techniques.380

We carefully considered two points when designing the behavioral paradigm. First, we adopted a 2AFC381

framework, where two alternative options match symmetrically with two response targets. In other widely382

used tasks, there often exists asymmetry in either responses or stimulus categories, which can be problematic383

when interpreting different behaviors. For example, Go/no-Go tasks involve an action (“go”) and a suppres-384

sion of action (“no-go”) as two responses, which are likely driven by different neural circuits. Such tasks385

have thus become more suitable for studying impulsion and inhibition (Dong et al., 2010; na Ding et al.,386

2014; Eagle et al., 2008). On the other hand, yes/no tasks offer two asymmetric stimulus categories as op-387

tions, which are likely represented differently at the neural level (Wentura, 2000; Donner et al., 2009). In388

comparison, a multiple alternative forced choice framework is better in perceptual decision-making studies.389

Second, we designed the task to be self-initiated and self-paced by the animals. Self-initiation ensures that390

the animals are focused during the stimulus presentation, and self-pacing encourages them to respond with-391

out delay once they reach a decision. Compared to the commonly-used design where the stimuli show up392

automatically and animals can respond at any time point within a fixed response window, our design allowed393

us to collect precise response times in addition to choice data. Response times are particularly useful be-394

cause they are continuous (whereas choice data are discrete) and are more informative when characterizing395

decision behaviors. For example, fast correct responses have potentially different mechanisms from slow396
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correct responses, which would be impossible to study without the RT information.397

We used models under the SSM family to fit tree shrew decision behaviors on the trial level. SSMs398

predict the choice and RT distribution with a mathematically defined dynamic decision-making process399

controlled by cognitively meaningful parameters and offer testable hypotheses about the underlying mech-400

anisms. Signal detection models have also been used to explain perceptual decision-making behaviors401

(Newsome et al., 1989), but they only predict the choices made by subjects in a decision process, ignor-402

ing the information contained in the response time. Furthermore, the choice data are usually averaged over403

trials, further reducing the information present in the raw data. By comparison, SSMs have the advantage of404

maximizing the efficiency of the animal experiments and data analysis (Ratcliff et al., 2003).405

Despite the RDM showing a slightly better Bayes Factor than the TRDM in the exponential-delay406

group due to simplicity, the TRDM had the same ability to reproduce the observed choice and RT pattern.407

Together with its overwhelmingly better performance in the fixed-delay group, the TRDM was overall the408

better model for this dataset. By examining the source of the simulated data (Fig. 4-1), we found that timer-409

induced random choices largely contribute to the plateau of a non-perfect accuracy in the easiest conditions.410

Canonically, this non-perfect accuracy is modeled by “lapse rate” under the Signal Detection framework411

(Wichmann and Hill, 2001; Aguillon-Rodriguez et al., 2021; Wang et al., 2020; Prins, 2012). The lapses412

are usually assumed to happen via a Bernoulli process, i.e., the animals simply make guesses at some ran-413

dom rate independently from trial to trial, while providing no detailed process of choice generation. In414

comparison, the TRDM utilizes a time accumulator that is highly similar to evidence accumulation to gen-415

erate random choices. It offers a more integrative solution to the interaction between evidence-based and416

stimulus independent mechanisms. This can be more plausible on the neuronal level than two separate pro-417

cesses that involve very different calculations. In addition, the TRDM provides the extra ability to explain418

why we rarely see extremely long RTs in the difficult conditions, especially in the equal-evidence conditions.419

The time accumulator can limit the RT so that the decision-makers do not waste too much time on a single420

decision when the evidence is obscure. Thus, we think that the TRDM has more explanatory power than421

models that include a “lapse rate”. Furthermore, a recent study showed that mice alternate between states,422

such as lapse or biased decisions, during a perceptual decision-making task, and they have a higher proba-423

bility to stay in the same state for consecutive trials (Ashwood et al., 2022). Therefore, Bernoulli “lapses”424

would be an oversimplified explanation of how non-perfect choices happen. In future studies, the temporal425

sequence of choices and RTs should also be analyzed to further investigate the mechanism of decision state426

switching.427

Finally, it is intriguing that the tree shrews in this study showed a fair amount of premature choices428

under fixed trial-delay even though this strategy was suboptimal, in that it did not maximize the reward429

rate. The TRDM suggested that the animals actively applied a fast timer (or a short time limit) on the task430

without being trained to perform the task speedily. Interestingly, this tendency of rushing into choices was431

discouraged by the exponential trial-delay design that specifically punished fast incorrect responses more.432

The baseline suboptimal behavior could partly be due to 1) the characteristics of this animal model and/or433

2) the stimulus design. The tree shrews showed much faster responses compared to humans on similar tasks434
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(Kirkpatrick et al., 2021) . They were very nimble and showed swift movements and reactions in various435

environments (behavior rig, home cage, nature, etc...). Given their motor capabilities, fast responses could436

be a survival strategy to guarantee the total amount of reward via high sampling frequency with slightly437

compromised accuracy, and could be broadly used in most scenarios to facilitate “exploration” behaviors438

- unless specifically discouraged. Additionally, in previous perceptual decision-making studies, stochastic439

stimuli with motion such as random dot kinematogram were usually used (Roitman and Shadlen, 2002;440

Resulaj et al., 2009; Ditterich, 2006). These stimuli require temporal integration to acquire evidence for441

choices. In our study, we used the static feature (contrast) as evidence. Although studies showed support442

for evidence accumulation even using the static stimuli in other species (Kirkpatrick et al., 2021), temporal443

integration might not be needed as strongly to generate a choice under this situation. This could result in444

short response times, leading the animals to a faster RT regime (more prone to make premature choices) and445

masking the effect of task difficulty on the RT (Fig. 2G, minor effect, although significant). Nevertheless,446

the tree shrew data emphasized the natural existence of f evidence-independent mechanisms in decision-447

making and offered an opportunity to examine their effects. These behavioral patterns also suggest that448

we should consider the involvement of processes in addition to the evidence accumulation process in other449

animal/human models when interpreting both behavioral and neural data from decision-making tasks. Here,450

we included an independent time accumulator to implement this additional process in our decision-making451

models (Hawkins and Heathcote, 2021). However, it should be noted that mechanisms other than the time452

accumulator could also generate the fast guessing responses and our results do not rule out these possible453

mechanisms. In other words, the time accumulator was not necessarily the true underlying mechanism,454

but rather a piece of evidence for the involvement of multiple generative processes for decision instead of455

one single process. Other studies have indeed applied alternative approaches to account for decisions not456

entirely based on evidence accumulation, such as combining the decision process with a probabilistic fast-457

guess mode that generates a normally distributed guessing time (Ratcliff and Kang, 2021). Future studies458

that incorporate neural data will be needed to reveal exactly how response times in perceptual decision tasks459

are affected by information other than the sensory strength.460
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Main Figures and Tables616

Figure 1 Experimental design.617

A A photo of a tree shrew in the home cage.618

B A schematic of the training procedure.619

C The contrast discrimination task. The animal needs to choose the side that has a higher contrast gabor and620

report the choice by licking the corresponding port.621

D Learning curve of individual animals. The y axis is the response accuracy for the easiest condition on622

each day. Day 1 refers to the first day of training with two-sided gabor stimulus. Dashed gray line: 75%623

accuracy. Most animals reached this level by day 2 and all by day 7.624

Figure 2 Tree shrews show different behaviors under two training schemes.625

A A fixed delay of 4 seconds (solid line) was used in training 1 group of animals. The dashed line shows626

the theoretical reward rate under this fixed delay.627

B Psychometric curve of animals from this training scheme. Contrast difference: right contrast(R) - left628

contrast(L). Grey dashed line: individual animals. Black solid line: average across animals.629

C response time (RT) as a function of contrast difference. Dashed line: individual animals. Solid line:630

average across animals. The shaded area is 95% confidence interval.631

D RT density histogram from a representative animal. Correct and incorrect trials are separately plotted.632

E An exponential decay delay scheme (solid line) was applied in another group. The dashed line shows the633

theoretical reward rate under this scheme.634

F, G, H: Same as C, D and E, but for the second group.635

Figure 2-1 and 2-2 show the RT distributions of individual animals from the fixed-delay group and exponential-636

delay group respectively.637

Figure 3 Modeling results suggest that evidence accumulation combined with a timing mech-638

anism better fits tree shrew decision-making behavior.639

A and B Racing Diffusion Model (RDM, A) and Timed Racing Diffusion Model (TRDM, B). Blue trace: the640

evidence accumulator for left choice. Yellow trace: the evidence accumulator for right choice. Grey trace:641

the time accumulator. The 2 evidence accumulation processes race against each other. In these schematics,642

the accumulator for right stimuli (yellow) reaches the threshold first, resulting in a rightward choice.643

C Observed (histograms) and simulated (lines) RT distribution for the representative animal from the fixed-644

delay group. Top: RDM simulation. Bottom: TRDM simulation.645
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D Observed and simulated RT distribution for the representative animal from the exponential-delay group.646

Top: RDM simulation. Bottom: TRDM simulation.647

E Estimated log Bayes Factor comparing the two models’ performance. Positive values favor TRDM, while648

negative values favor RDM. Grey dots represent the animals from the fixed-delay training, and green dots649

represent the exponential-delay group. The upper and lower edges of the gray shaded area represent the650

lower limit for “very strong” evidence (ln(BF ) = 5).651

Figure 4 Model simulation of the psychometric curves and associated response time, and the652

posterior of the timer-related parameters.653

A TRDM simulation for the fixed-delay group. Left: Observed (black) and simulated (red) psychometric654

curves for individual animals (dotted lines) and the group average (solid lines). The simulations were done655

with the best fitting parameters of the TRDM. Right: Observed (dots, solid lines, and dotted lines) and656

simulated RT function (“x”). Dotted lines: individual animals. Solid lines: group average.657

B RDM simulation for the fixed-delay group.658

C TRDM simulation for the exponential-delay group.659

D RDM simulation for the exponential-delay group.660

E Percentage of timer-induced choice calculated from the TRDM-simulated data for each animal.661

F The posterior distribution of the time accumulator mean drift rate (ρt) for individual animals from the662

TRDM fitting. The dot in each distribution indicates the mean value.663

G Same as F, but for the drift rate variability of the time accumulator (ηt).664

Figure 4-1 shows the decomposed simulation data of TRDM for one example animal.665

Table 1 Priors of Free Parameters in Tested Models.

Parameter Description Prior

ω Bias IL(0, 1.4)
t0,c Non-decision time of choice IL(0, 1.4)
v0, vs, vd Drift rate coefficients of choice LN(1.56, 1.5)
ρ∗t Mean drift rate of timer LN(1.56, 1.5)
ηc, η

∗

t Within-trial variability LN(1.56, 1.5)
γ∗ Mixture between random and evidence-based

timer-induced decision

IL(−1, 1.0)

IL inverse logit distribution
LN log normal distribution
∗ parameters only exist in TRDM

The best fitting parameters of the two models for each animal is shown in Table 1-2 and

1-3. We also tested the relationship between RT and contrast difference using non-model

statistics described in Table 1-1.

21



Extended Data666

Extended Data 1: code for analysis and modeling667

fit rdm.py668

fit trdm.py669

single animal preprocessing.ipynb670

waldrace.py671

Figure 2-1 Response time distributions of the individual animals from the fixed-delay group.672

Figure 2-2 Response time distributions of the individual animals from the exponential-delay673

group.674

Figure 4-1 Decomposition of an example animal’s simulated RT distribution by the TRDM.675

A The simulated RTs for one example animal (TS085) from the first group are divided into four groups:676

evidence accumulator generated RT for correct (blue) and incorrect (pink) responses, and time accumulator677

generated RT for correct (green) and incorrect (yellow) choices. Compared with the observed data (B), the678

plots show that the TRDM interprets the first peak (fast RT) in the RT distribution as generated by the time679

accumulator.680

C Simulated psychometric curves generated by the evidence accumulators and the time accumulator.681

D Evidence accumulator simulated RT as a function of contrast difference.682

Table 1-1 Statistical Table.683

Table 1-2 TRDM Best Fitting Parameters of Each Animal.684

Table 1-3 RDM Best Fitting Parameters of Each Animal.685
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