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ABSTRACT 1 

Place code representation is ubiquitous in circuits that encode spatial parameters. For visually guided 2 
eye movements, neurons in many brain regions emit spikes when a stimulus is presented in their 3 
receptive fields and/or when a movement is directed into their movement fields. Crucially, individual 4 
neurons respond for a broad range of directions or eccentricities away from the optimal vector, making 5 
it difficult to decode the stimulus location or the saccade vector from each cell’s activity. We 6 
investigated whether it is possible to decode the spatial parameter with a population-level analysis, 7 
even when the optimal vectors are similar across neurons. Spiking activity and local field potentials 8 
(LFP) in the superior colliculus were recorded with a laminar probe as monkeys performed a delayed 9 
saccade task to one of eight targets radially equidistant in direction. A classifier was applied offline to 10 
decode the spatial configuration as the trial progresses from sensation to action. For spiking activity, 11 
decoding performance across all eight directions was highest during the visual and motor epochs and 12 
lower but well above chance during the delay period. Classification performance followed a similar 13 
pattern for LFP activity too, except the performance during the delay period was limited mostly to the 14 
preferred direction. Increasing the number of neurons in the population consistently increased 15 
classifier performance for both modalities. Overall, this study demonstrates the power of population 16 
activity for decoding spatial information not possible from individual neurons. 17 

 18 

SIGNIFICANCE STATEMENT 19 

We make countless goal-directed eye movements each day. Individual neurons that signal for the 20 
appearance of a visual stimulus and/or the execution of a rapid eye movement often fire at 21 
comparable levels for very different spatial parameters. We recorded both spiking activity and local 22 
field potential (LFP) signals across many channels simultaneously and asked whether the spatial 23 
parameter of target or saccade direction can be decoded across a broad range of the visual field. 24 
Applying simple categorical classifiers to ‘populations’ of neurons, we found that both spiking and LFP 25 
activity were informative of direction early on, starting at the initial visual response and continuing 26 
through movement initiation. This investigation demonstrates the advantage of a population-level 27 
framework over traditional approaches. 28 

 29 

INTRODUCTION 30 

We interact with our environment by redirecting our line of sight to objects of interest. A large 31 
network of neural structures is involved in this process of sensorimotor integration. The superior 32 
colliculus (SC), a topographically organized laminar structure in the subcortex, is essential for the 33 
control of visually guided eye movements known as saccades (see reviews by Basso & May, 2017; 34 
Gandhi & Katnani, 2011). Neurons in the superficial layers are primarily sensory, producing a burst of 35 
spikes when a stimulus is presented in their receptive fields. Neurons in the deep layers are 36 
predominantly motoric, emitting a volley of spikes prior to the generation of a saccade in their 37 
movement field. Neurons in the intermediate layers exhibit both sensory and motor bursts. In reality, 38 
the extent of visual and motor bursts varies inversely as a continuum along the dorsoventral axis (Ikeda 39 
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et al., 2015; Massot et al., 2019; Mohler & Wurtz, 1976). Within a layer, neurons vary in their preferred 40 
vector along the mediolateral and rostral-caudal axes, respectively. An individual neuron at a particular 41 
position on the SC map will exhibit maximal activity for its optimal vector (in sensory and/or motor 42 
domains) and gradually less for vectors away from it (Goldberg & Wurtz, 1972; Sparks, 1975; Sparks et 43 
al., 1976; Wurtz & Goldberg, 1972). Take for example a hypothetical deep layer neuron recorded at the 44 
location on the SC map shown in Figure 1A as a green dot. If the executed saccade is horizontal and 45 
rightward with a 20 degree amplitude (Figure 1A, right panel), this neuron will be located at the “hot 46 
spot” of activity produced in the SC. The farther neurons are from this hot spot, the less active they will 47 
be, as the spread of activity is thought to decay in a Gaussian-like manner. Now say the amplitude of 48 
the executed saccade is held constant but the direction is at an angle 45 degrees counterclockwise 49 
(Figure 1B). In this case, the neuron will no longer be located at the hot spot on the SC map and thus 50 
will have much less activity. One can imagine a case in which the recorded neuron has similar activity 51 
levels for yet other saccade vectors (i.e., Figure 1C). In such conditions, the activity elicited at the 52 
recorded location is similar, so it follows that discriminating the direction of saccade vectors far away 53 
from the preferred direction of a single neuron is challenging.  54 

 55 

**FIGURE 1 HERE** 56 

 57 

Experimenters most often approach the SC with probes inserted orthogonally to the SC surface. The 58 
typical approach for isolating one neuron and recording its activity during behavioral tasks is 59 
represented in the left panel of Figure 1D. However, with recent technological advances, researchers 60 
can record from small “populations” of neurons via a laminar probe, with electrode contacts spanning 61 
the dorsoventral axis of the SC (Figure 1D, right panel). Neurons along this axis systematically vary in 62 
the degree to which they signal for sensory and motor parameters across depth (Ikeda et al., 2015; 63 
Massot et al., 2019; Mohler & Wurtz, 1976) but are thought to encode roughly the same intended 64 
stimulus location/saccade vector, thus yielding a highly homogenous population. In contrast, placing 65 
multicontact electrodes into cortical oculomotor structures such as the frontal eye fields (FEF) yields a 66 
heterogenous population – each neuron in the recorded population will signal maximally for a very 67 
different amplitude and direction of the intended eye movement (Bruce et al., 1985; Sommer & Wurtz, 68 
2000). In such structures, it is easier to appreciate how recording from populations of neurons would 69 
provide an advantage in discriminating spatial parameters of the stimulus or saccade vector (see for 70 
example the classic idea of population vector averaging in Georgopoulos et al., 1983; also see Graf & 71 
Andersen, 2014; Jia et al., 2017). Given that the topography of the SC does not provide the same 72 
spatial variability when using the standard electrode approach, it is not as intuitive that population 73 
activity could improve discriminability of spatial parameters across a broad range of the visual field 74 
over that of single units. 75 

We challenged this notion by testing whether information about a broad range of visual stimulus 76 
locations and/or saccade directions can be obtained from activities of small populations of 77 
simultaneously recorded SC neurons within a specific location on the SC topographic map, and if so, at 78 
what time(s) during the sensorimotor integration process this spatial information is present. 79 
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Accordingly, we investigated the time course of direction discriminability present in the spiking activity 80 
of SC neural populations and compared the neurons’ encoding properties with a second signal 81 
modality, the local field potential (LFP), which at a given recording site reflects the aggregate activity of 82 
nearby neurons through a measure of their extracellular voltage (Buzsáki et al., 2012). We recorded 83 
both signals simultaneously across layers of the SC while rhesus monkeys (Macaca mulatta) performed 84 
delayed saccades to one of eight targets radially equidistant in direction. We then trained a simple 85 
linear classifier to output the most likely direction to which small windows of spiking or LFP activity 86 
belonged. The performance of the classifier across time and directions gives a comprehensive 87 
indication of the spatial encoding properties of SC activity during sensorimotor integration. We found 88 
that both spiking activity and LFPs from a small number of neurons can decode among the categories, 89 
including for the opposite hemifield, as early as the visual response.  90 

 91 

METHODS 92 

Animal preparation 93 

Two adult male rhesus monkeys (Macaca mulatta; BL and SU) were used in this study. All experimental 94 
procedures were approved by the University of Pittsburgh Institutional Animal Care and Use 95 
Committee. A sterile surgery was performed on each animal to implant a stainless-steel recording 96 
chamber (Narishige, Inc.) angled 40 degrees posterior with respect to vertical. Electrode penetrations 97 
through this chamber approach the SC orthogonal to its surface and traverses its dorsoventral axis 98 
along a track where neurons have similar response fields. Both animals were fitted with a 99 
thermoplastic mask to achieve fixation of the head during experimental sessions (Drucker et al., 2015). 100 

Data collection 101 

Comprehensive details about neurophysiology and microstimulation are provided in Massot et al., 102 
2019. In brief, a 16 (monkey BL) or 24 (SU) channel laminar microelectrode (Alpha Omega, Inc., or 103 
Plexon, Inc., respectively) was inserted acutely into the SC to record neural activity across different 104 
layers. We stopped driving the electrode when characteristic SC spiking activity – typically visual and 105 
motor bursts – was qualitatively observed across many of the central-most recording channels. Then, 106 
some individual channels were stimulated (400 Hz, 20-40 uA, 100 ms biphasic pulses) to qualitatively 107 
determine an average evoked saccade vector, which was used as the preferred location for that 108 
session’s neural population. The raw activity recorded on each channel was separated into spike times 109 
(high pass filtered at 250 Hz and discretized using a standard threshold) and LFP (low pass filtered at 110 
250 Hz). The majority of channels with task-related spiking activity were visuomotor neurons that 111 
exhibited large transient bursts both in response to a visual stimulus and before/during saccade. Only 112 
channels with peak spiking activity greater than 20 spk/s above baseline during either the visual or 113 
motor epochs were counted as functional channels and included in analyses (with total channels, 𝑈, 114 
ranging from 6 to 17 across sessions). For visualization only, spike counts were converted into firing 115 
rates by convolving each channel’s spike train with a Gaussian kernel of 10ms width (as in Figure 2A) 116 
and LFPs were bandpass filtered between 0.5 and 250 Hz with a notch filter at 60 Hz (as in Figure 2B). 117 
Data from 15 sessions from monkey SU and 3 sessions from monkey BL were collected (𝑁 = 18 total 118 
sessions). 119 
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Behavioral paradigm 120 

Each monkey was trained to sit in a primate chair and perform a standard eye movement task in a 121 
dimly lit room. Eye position was tracked with an infrared eye tracker (EyeLink 1000, SR Research, Ltd.; 122 
see Massot et al., 2019 for additional details). During each recording session, animals performed many 123 
trials of a center-out delayed saccade task to one of eight possible targets evenly spaced in 45-degree 124 
increments around the fixation point. The delay period length was randomized from trial to trial, 125 
spanning 600-1200 ms (monkey BL) or 700-1500 ms (monkey SU). Each target had an equal likelihood 126 
of presentation, and “Target 1” was either placed at the spatial location corresponding to the 127 
estimated preferred saccade vector (for the majority of sessions) or at the position (10, 0) in polar 128 
coordinates. In the latter case, preferred target direction was re-defined as Target 1 following 129 
examination of the average spiking activity profiles for that session (as in Figure 2). For sessions in 130 
which the target position was rotated and scaled, the circular mean direction of Target 1 was 131.6°, 131 
with mean amplitude of 14.6 (𝑁 = 12 sessions). The animal was given a liquid reward after executing a 132 
saccade to a location within 2° of the target position, and only these successful trials were included in 133 
analyses (typically yielding over 1000 total trials across all target directions per session).  134 

Classification methods 135 

Custom MATLAB code (MathWorks, Inc.) was used for all analyses unless otherwise specified. Target 136 
location was decoded offline from population activity on each session individually. Summed spike 137 
counts or average LFP voltage on each channel in 100 ms time windows, sliding in 10 ms increments 138 
across the duration of each individual trial, were labeled as belonging to Target 1 through Target 8 139 
depending on the target location presented on that trial. For each individual 100 ms time bin, a 140 
separate linear discriminant classifier was trained on these summed spike counts or average LFP 141 
voltage from a randomly selected 70% of total trials (pooled across all targets), and its performance 142 
was tested on the remaining 30%. Classifier performance was measured through the F1 score, a 143 
common metric for multiclass classifiers that takes into account both the sensitivity and precision of 144 
the model for each target while countering any overfitting/underfitting of the model to activity 145 
belonging to a particular target (e.g., Zhi et al., 2018). This process of randomly selecting 70% and 30% 146 
as training and test trials, respectively, was repeated for a total of 10 times for each window and each 147 
session to obtain an average classifier performance across iterations. Importantly, each classifier was 148 
trained and tested only on activity belonging to a particular time range and had no information about 149 
future or past windows that would influence performance within a given window. To determine an 150 
experimental chance level, target labels were randomly shuffled and the classification process 151 
described above was repeated. The actual chance level tended to closely match theoretical chance 152 
level performance of 1 out of 8 targets, or 12.5% (results not shown). Before averaging across sessions, 153 
the classifier performance value of true and shuffled data in each window for each target was 154 
subtracted by the mean performance value for that target during the first 200 ms of the baseline 155 
period (i.e., 400 ms to 200 ms before target onset). This was done to normalize all sessions’ 156 
performance values as a change in performance relative to baseline. In all visualizations of classifier 157 
performance across time (Figure 3 through Figure 5), values are plotted in a causal manner; for 158 
example, performance for the set of observations in the time window 100 to 200 ms after target onset 159 
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is plotted at the 200 ms mark to represent that only historical activity was used to create and test a 160 
model of spatial location information. 161 

A linear discriminant analysis (LDA) classifier is a supervised, geometric model that finds a hyperplane 162 
that maximally separates the input features between two categories, or “classes,” during the training 163 
phase. In this paradigm, there are 𝑈 input features that correspond to the spiking or LFP activity on all 164 
functional channels (as described in “Data collection” section), but there are 8 classes that correspond 165 
to the 8 targets presented. Since an LDA model is by definition a binary classifier, we implemented a 166 
common technique called error-correcting output codes (ECOC) that fits a series of binary LDA 167 
classifiers in a one-vs-one manner to convert the model into a multiclass classifier, allowing for 168 
simultaneous classification into more than two categories (Derya Übeyli, 2008). During the testing 169 
phase, new data is shown to the model, and the class (i.e., target to which the activity corresponds) is 170 
determined by the position relative to the hyperplanes that were found during the training phase. To 171 
note, a pseudolinear discriminant classifier was implemented for spiking activity to combat the low or 172 
absent spike counts on some channels in certain time windows, which often leads to zero variance 173 
across observations and disrupts model fitting. To ensure that our results were robust to the type of 174 
classifier used, we also repeated all analyses using a ECOC support vector machine (SVM) algorithm 175 
and found classifier performance dynamics for both spiking and LFP activity to be quite similar to those 176 
found via ECOC LDA classification. 177 

For analysis of the effect of window length on classifier performance, spike counts were summed and 178 
LFP voltage was averaged across each window of length [20, 50, 100, 200, 300] ms, which again were 179 
calculated in sliding increments of 10 ms (Figure 5). Then, the total number of functional channels 180 
recorded in a given session (see “Data collection” for description of 𝑈, the total number of channels 181 
with task-related activity) were randomly shuffled and a subset was selected to be included as the 182 
input features to the spike count classifiers. This process was repeated for population sizes starting at 1 183 
(equivalent to a single channel) and ending at 𝑈 (Figure 6A). The same randomly selected channels 184 
were used for the LFP classifiers (Figure 6B).  185 

To represent the spatial tuning properties of our neural populations during the many epochs of this 186 
behavioral task, we defined a range of times for each of five epochs (baseline, visual, early delay, late 187 
delay, and motor) during which we pulled out a single across-session classifier performance value for 188 
each target direction. Baseline performance was taken as the mean value in the range of 400 ms to 200 189 
ms before target onset. Visual performance was taken as the maximum value around the time of the 190 
visual burst, typically occurring within the 100 ms to 200 ms range after target onset. Early delay 191 
performance was taken as the mean value in the range of 250 ms to 450 ms after target onset. Late 192 
delay performance was taken as the mean value in the range of 300 ms to 100 ms before saccade 193 
onset. Motor performance was taken as the maximum value around the time of the motor burst, 194 
typically occurring near saccade onset. 195 

All statistical comparisons of classifier performance between signal modalities or epochs (in Figure 7 196 
and Figure 8) were performed using a paired two-tailed t-test with α = 0.05 indicating a significant 197 
difference between the two distributions included in the comparison. 198 

 199 
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RESULTS 200 

We set out to determine if and at what times during a behavioral task do neural populations in a single 201 
column of the SC encode information about the spatial configuration of the trial. We employed a 202 
simple offline decoding algorithm (linear discriminant classifier) as a proxy for discriminability of spatial 203 
location (i.e., to which out of 8 possible targets will an animal make a saccade on a given trial) during 204 
independent sliding windows of time throughout a behavioral task. This decoding algorithm was 205 
applied separately to the spiking activity of simultaneously recorded neurons and to the local field 206 
potential (LFP) recorded at the same locations across the dorsoventral axis of the non-human primate 207 
SC. Importantly, we remain agnostic with respect to whether the population encodes sensory and/or 208 
motor information at any given time. Instead, we will use any combination of terms “target/saccade 209 
direction/location” throughout the text and do not make any attempts to distinguish whether the 210 
spatial information being encoded is related to sensory (i.e., visual stimulus angle relative to eye 211 
position at fixation) or motor (i.e., intended saccade direction relative to starting eye position) 212 
representations. 213 

In Figure 2A, the trial-averaged firing rates across all functional channels of an example session are 214 
plotted as colored traces aligned to target onset (left panels) and saccade onset (right panels). In 215 
general, the firing rates of these neurons are highest in the preferred direction (i.e., Target 1) and are 216 
less vigorous as the angular direction of the target/saccade moves away. In the opposite hemifield (i.e., 217 
Targets 4 through 6), activity across all channels is minimal. Figure 2B shows the trial-averaged voltage 218 
values of the LFPs across the same functional channels of the example session. Only minimal 219 
deflections from baseline levels are present for all target locations away from the preferred direction. 220 
Despite similar firing rate properties and LFP voltage deflection characteristics across all channels, can 221 
a method that utilizes the activity pattern across the population aid us in understanding how the SC 222 
encodes the spatial parameter of direction? To do this, we trained and tested simple linear classifiers 223 
to output the category (one of eight directions) to which either spiking or LFP activity belongs. 224 

 

**FIGURE 2 HERE** 

 

The black traces in Figure 3 show the across-session mean performance in decoding target location 225 
from small windows of summed spike counts for each target. Here, Target 1 (middle right) has been 226 
rotated for each session to represent the target location most preferred by the neural population 227 
recorded on that day (as determined by microstimulation, see Methods). By aligning all sessions 228 
according to their preferred target location, we can better appreciate any change in decoding target 229 
location as a function of the proximity of a target to the preferred target. In other words, Targets 2 and 230 
8 are approximately equidistant from the preferred target, while Target 5 represents the target 231 
diametrically opposite to the preferred target – one that is in the opposite hemifield.  232 

 

**FIGURE 3 HERE** 
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The first, and perhaps most obvious, observation to note is that spatial information is best decoded 233 
during the neural populations’ visual and motor bursts, peaking roughly 150 ms after target onset and 234 
again around saccade onset, respectively. This aligns well with the population-averaged response 235 
during these two epochs (e.g., Figure 2A). Next, and perhaps just as intuitive, is the observation that 236 
the decoding performance is best for the target in the preferred location. Equivalently, the spiking 237 
activity pattern is most distinct from other target locations when the target is presented in the 238 
preferred location (i.e., the target that evokes a maximal firing rate in response to its appearance). 239 

Equally importantly, note that spatial information can still be decoded from targets far away from the 240 
preferred location (e.g., Targets 4-6). Despite the low firing rate modulation for these targets, the 241 
spiking activity is in fact still distinct across targets presented in this region; otherwise, the 242 
performance would remain at baseline level (here, at 0 on the y-axis) throughout the trial. Instead, the 243 
classification performance is well above chance level for these directions, including for the location 244 
diametrically opposite the preferred direction. This result can likely be attributed to the activity seen in 245 
individual channels when targets in this region are presented, although the direction of modulation 246 
(i.e., elevation or suppression of activity) for saccade targets in this hemifield is unique to each 247 
individual neuron and population (see example session in Figure 2A). The last main observation in 248 
Figure 3 (black traces) is that the decoding performance remains elevated throughout the delay period, 249 
in the time between the transient visual burst and the much-later motor burst, especially for targets in 250 
and near the preferred location. This result suggests that target location is one form of information still 251 
present during the delay period, which can be attributed to the sustained tonic activity exhibited by 252 
many SC neurons following the end of the transient visual response.  253 

 

**FIGURE 4 HERE** 

 

Next, we applied a classification algorithm to the LFPs recorded simultaneously across many channels. 254 
The green traces in Figure 3 show the across-session mean performance when decoding target location 255 
from small windows of averaged LFP voltage signals. A decoding performance comparable to the spike 256 
count-based classifier was found during the visual epoch. However, in contrast to the spiking activity-257 
based classification, the ability to decode spatial location from LFPs during the delay period is much 258 
more constrained to the preferred target direction. This tuning once again becomes more broad during 259 
the motor epoch, although the extent of spatial information does not expand past that observed 260 
during the visual epoch as it does in the spike-based classifier. A summary of the spread of 261 
performance for the spike count and LFP classifiers during five key epochs – baseline, visual, early 262 
delay, late delay, and motor – is presented in Figure 4.  263 

 

**FIGURE 5 HERE** 
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We next determined if these observations were robust to the size of the window used to classify the 264 
target location. Therefore, we systematically varied the bin width of summed spike counts used to 265 
train and test the classifier from very small (20 ms) to very large (300 ms), and the across-session mean 266 
performance for each bin width is shown in Figure 5A for one example session. Indeed, varying the bin 267 
width did not qualitatively change the conclusions drawn above. Instead, the spatial location decoding 268 
performance gradually increased as bin width increased, plateauing around the 100 ms window length. 269 
In other words, using summed spiking activity from time ranges longer than 100 ms did not improve 270 
the classifier performance, from which we infer that information about spatial location is encoded 271 
maximally in short periods of spiking. In contrast, when the LFP signal is averaged across windows 272 
ranging from 20 ms in length to 300 ms in length, as shown in Figure 5B, we see that the maximum 273 
performance is reached when the window length is the shortest during the visual and motor epochs 274 
(see dark blue and light green arrows for Target 1). This short optimal window length suggests that 275 
spatial information is encoded maximally in short periods of time during these transient epochs, unlike 276 
that observed in the spike-based classifier. However, just as with spiking activity, spatial information 277 
seems to be maximally encoded on a longer time scale during the delay period. 278 

 

**FIGURE 6 HERE** 

 

Perhaps most importantly, we asked whether the same level decoding performance could be achieved 279 
by only selecting a random channel as if using a traditional single electrode or a subset of channels to 280 
artificially decrease population size. Figure 6 shows the result of this systematic variation in population 281 
size from 1 channel up to 𝑈 channels, which is equivalent to the number of functional channels 282 
recorded in a given session. For both spike count and LFP classifiers, average across-session 283 
performance increases nearly monotonically as population size increases. A breakdown of this trend 284 
during four key epochs (visual, early delay, late delay, and motor) can be seen in Figure 7. Hence, it is 285 
effective to decode the spatial parameter of direction from seemingly homogenous neural populations 286 
in the SC.  287 

We also repeated the classification process after dividing each session’s channels into three 288 
subpopulations based on each channel’s relative firing rate in the visual and motor epochs (through a 289 
standard visuomotor index). As expected, the subpopulations with the highest firing rates during the 290 
visual epoch (presumably located in the more superficial SC layers) yielded the highest classifier 291 
performance of all subpopulations during the visual epoch (observations not shown). In a similar 292 
fashion, the more motoric populations (likely located in the deeper SC layers) led to the highest 293 
performance during the motor epoch (observations not shown). However, we did not aim to isolate 294 
purely visual or purely motor neurons when collecting data and consequently could not fully tease 295 
apart the relationship between neuron subtype and temporal dynamics of classifier performance. 296 

 

**FIGURE 7 HERE** 
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Last, we quantitatively compared the spatial encoding properties across epochs and signal modalities – 297 
first for each individual target direction and then integrated across all eight target directions. Figure 8 298 
breaks down the classification performance during the visual epoch vs. the motor epoch independently 299 
for each target and signal modality. Each point corresponds to the peak decoding performance during 300 
the visual and motor epochs for a single session and target direction. We tested whether for each 301 
target and modality the performance was significantly different between the two epochs through a 302 
paired t-test, which is shown in the inset of Figure 8. The spike-based classifier produced consistently 303 
higher performance in the motor epoch than in the visual epoch for all target directions irrespective of 304 
the angular distance from the preferred location. On the contrary, the LFP-based classifier only 305 
displayed significantly different performance between the visual and motor epochs for target 306 
directions far from the preferred direction. 307 

 

**FIGURE 8 HERE** 

 

To summarize both the amount and the spatial extent, or breadth, of information across all targets, we 308 
computed an area under the curve (AUC) of decoding performance separately for each epoch and 309 
signal modality. Figure 9A shows the decoding performance across targets during four key epochs (see 310 
Methods for definitions) for the spike-based classifier in black and the LFP-based classifier in green. The 311 
session-averaged traces are comparable to data shown in the polar plots of Figure 4. To quantify the 312 
total amount of information across all targets, we first computed in each epoch independently the 313 
trapezoidal area under the session-averaged decoding performance trace. The pairwise difference in 314 
AUC between the two signal modalities is plotted in Figure 9B. Beginning in the visual epoch, the 315 
amount of spatial information is significantly different between spikes and LFPs (paired t-test), and this 316 
separation persists throughout the time course of the trial. Then, to obtain a measure of the spatial 317 
extent of classification performance – that is, the narrowness or breadth of ability to characterize 318 
neural activity across the full range of target directions – we shifted each population’s decoding values 319 
such that the decoding performance was 1 for the target in the preferred direction (i.e., Target 1) 320 
before taking the area under the tuning curve. This provides a means of normalization across epochs so 321 
that any uniform shifts in decoding performance across all targets from one epoch to another do not 322 
impact this measure. The normalized AUC for each signal modality for each epoch is shown in Figure 323 
9C. Statistical testing (Figure 9D) revealed that, for the spike-based classifier, the normalized AUC is 324 
only significantly different between the visual and motor epochs and between the late delay and 325 
motor epochs. For the LFP-based classifier, the tuning width is significantly different across all epochs, 326 
indicating a dynamic shift in spatial encoding across epochs. 327 

 

**FIGURE 9 HERE** 
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DISCUSSION 328 

In this study, we investigated the spatial discrimination properties of spiking activity and LFP signals in 329 
the SC, an oculomotor structure critical for the transformation of sensory input into motor commands. 330 
The combination of the anatomical organization of the SC and the typical electrophysiological 331 
approach lends itself to recording neural activity within a narrow column along the dorsoventral axis. 332 
Neurons within this track have largely similar preferred saccade directions as well as largely similar 333 
preferred visual target eccentricities (Gandhi & Katnani, 2011). We showed that despite this 334 
homogeneity, classification algorithms operating on the active populations can differentiate among a 335 
wide range of directions. This population-level viewpoint provides insights into the spatial extent of 336 
direction tuning that can be decoded from neurons along the dorsoventral axis of the SC that through 337 
single unit studies was thought to be essentially nonexistent for all visual angles except those close to 338 
the preferred direction. 339 

For each short sliding window along the timeline of a delayed saccade task, a simple linear classifier 340 
was trained offline to categorize either spiking or LFP activity as belonging to one of eight directions. By 341 
evaluating the amount of change in classification performance above baseline, we obtained a singular 342 
measure of spatial information across the channels on which task-related activity was recorded. Such 343 
offline decoding algorithms have been used to characterize the spatial encoding properties of spiking 344 
activity (Boulay et al., 2016; Khanna et al., 2020; Ohmae et al., 2015) and LFP signals (Tremblay et al., 345 
2015) in cortical oculomotor areas. Implementing classifiers to link neural activity to a behavioral 346 
phenomenon is beneficial because they provide a quantitative, comprehensive measurement of 347 
information encoding in neural populations (Glaser et al., 2020). Of note, we do not claim that the 348 
encoded information at any time represents a particular feature such as sensation, motor preparation, 349 
or motor initiation. Instead, we simply characterize the amount of information about direction present 350 
in the population throughout the timeline of sensorimotor integration. The end position of the saccade 351 
had to be within two degrees of the target position to count as a correct trial, which is a negligible 352 
displacement compared to the 45-degree angular distance between each pair of the eight targets used 353 
as the categories for classification. Thus, we have referred to the encoded target direction and saccade 354 
direction synonymously. However, a fine-scale characterization of the time points at which SC neurons 355 
encode spatial parameters in target-centered and gaze-centered coordinates has been reported 356 
previously (Lee & Groh, 2012, Sadeh et al., 2020, and Sajad et al., 2020). 357 

Prior studies have compared the visual receptive fields of oculomotor neurons to their movement 358 
fields (equivalently, their spatial tuning properties during the respective visual and movement epochs). 359 
In cortical areas such as the FEF, the preferred target direction of individual neurons tends to be 360 
consistent between the visual and motor epochs (Khanna et al., 2020). The visual receptive fields of SC 361 
neurons have also been shown to largely overlap with their movement fields (Anderson et al., 1998; 362 
Wurtz & Goldberg, 1972); but also see Marino et al., 2008, and Wurtz & Goldberg, 1972, for 363 
exceptions. Our results conform with these previous findings. When comparing the visual and motor 364 
epochs within a signal modality, we observed that the width of spiking activity-based discriminability 365 
across all target directions is significantly broader in the motor epoch than in the visual epoch (see 366 
Figure 9D).  367 
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Of much recent interest in the neuroscience community are the questions of what and how much 368 
information about various behavioral phenomena is contained in LFP signals – questions that have 369 
elicited studies on reach kinematic encoding by LFPs in primary motor cortex (Perel et al., 2015), 370 
attention in visual cortex (Prakash et al., 2021), route selection in hippocampus (Cheng et al., 2021), 371 
and grasping postures in anterior intraparietal cortex (Lehmann & Scherberger, 2015), among others. 372 
When comparing spatial encoding properties across the two simultaneously recorded signal modalities 373 
in this study, we found that the amount of spatial information present in spiking activity and LFPs 374 
diverged beginning in the visual epoch, with the spike-based classifier consistently better at decoding 375 
target location (see Figure 9B). Both signal modalities displayed similar breadth of spatial 376 
discrimination during the visual and motor epochs; in other words, the spatial extent of decoding 377 
performance across the eight targets was comparable between spike- and LFP-based classifiers during 378 
the visual response period and motor initiation period (considered independently – see Figure 9D). 379 
During the intervening delay period, the spike-based classifier performance remained high, but LFP-380 
based performance dropped to near baseline levels for all targets except the target closest to the 381 
neural population’s preferred direction. Thus, the encoding of direction is dynamic across epochs and 382 
signal modalities in the SC. Why might there be less information about target direction contained in 383 
LFP signals? For one, we did not arrange the presented targets according to the direction that elicited 384 
the maximum LFP deflection but rather according to the direction of the saccade elicited by 385 
microstimulation. Future experiments could elucidate the maximum amount of information encoded in 386 
LFP signals by rotating target placement to best align with the LFP preferred direction. 387 

It is possible that the radially equidistant target angles we presented did not elicit comparable firing 388 
rate conditions as schematized in Figure 1. For instance, if we entertain the notion that the SC map 389 
should be updated to include an overrepresentation of the upper visual field (Hafed & Chen, 2016), 390 
two equidistant target directions may yield imbalanced activity at the recorded location and 391 
consequently lead to a higher level of spatial discriminability. However, it is impossible to create a 392 
paradigm in which two target conditions elicit near-identical activity at the recorded location on the SC 393 
map, especially when recording from many neurons that all have slightly different preferred directions. 394 
Still, the trial-to-trial variability in firing rates and/or voltage values should obscure direction 395 
discriminability as long as these values are somewhat comparable between equidistant target 396 
directions (e.g., ±45°, ±90°, and ±135° as is the case in our experimental setup). This obfuscation should 397 
be most apparent for target directions in the opposite hemifield of the preferred direction, where 398 
activity across all channels is minimal. We see this lack of discriminability for single neurons, but this 399 
disappears as the population size is increased (Figure 7). The above-chance direction discriminability 400 
for targets in the hemifield opposite the preferred direction is intriguing; perhaps there is even more 401 
cross-SC interaction during sensorimotor integration than previously understood. 402 

We suggest that the SC is a suitable candidate for brain-computer interface (BCI) applications, 403 
especially in BCIs implemented to address fundamental neuroscience questions (e.g., Sadtler et al., 404 
2014). Although the vast majority of prior work that implements closed loop control of a computer 405 
cursor or robot arm has decoded neural activity from skeletomotor structures, a few groups have 406 
ventured into the oculomotor domain and demonstrated that volitional control of neural activity is 407 
possible in these areas (Graf & Andersen, 2014; Jia et al., 2017; Schafer & Moore, 2011) as well as in 408 
wholly non-motor areas (e.g., primary visual cortex, Neely et al., 2018). We foresee two possible 409 
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limitations to using SC neurons or LFPs to decode intended saccade direction. First, the SC is a deep 410 
brain structure, which imposes a constraint on the number of recordable electrode sites. Cortical 411 
arrays fit electrode sites on the scale of hundreds, while laminar probes suitable for deep brain 412 
recording only allow for contacts on the order of tens. This is the likely reason that prior 413 
implementations of oculomotor BCIs have targeted cortical regions such as the lateral intraparietal 414 
area (LIP), frontal eye fields (FEF), and supplementary eye fields (SEF). However, advances in 415 
technology (e.g., Neuropixels) may soon negate this limitation. Second, the organization of neurons 416 
within a column along the dorsoventral axis results in neural populations with largely the same tuning 417 
properties (Gandhi & Katnani, 2011). This homogeneity theoretically reduces the spatial extent of 418 
decoding capability to targets far from the preferred target location, although we surprisingly observed 419 
that this is not the case; in fact, even targets in the diametrically opposite location of the preferred 420 
direction have above-chance decoding performance during the putatively preparatory delay period 421 
when the classifier is based on spiking activity (e.g., Figure 3A). Nonetheless, a neural population with 422 
more varied preferred directions would maximize the spatial extent of high decoding performance. 423 
Recording from the FEF, a cortical oculomotor area, yields much more heterogeneity in directional 424 
tuning across electrode depth (Bruce et al., 1985), although due to its position in the bank of the 425 
arcuate sulcus the first limitation would still apply. Therefore, we are eager for the field to recognize 426 
the potential the SC has for brain-computer interface applications.  427 
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Figure 1. Schematic of spiking properties of recorded SC neurons. A. A widely accepted model of the left SC topographic 
map and the corresponding right visual hemifield. When a visual stimulus is presented in a particular location and/or a 
saccade is made to that location, neurons are active across the SC map. The hot spot of activity for the example recorded 
location is at the green dot when the amplitude and direction of the stimulus/saccade are 20° and 0°, respectively; activity 
spreads spatially across the SC in a Gaussian-like manner. B and C. SC activity elicited for vectors 45° (B) and -45° (C) away 
from the preferred direction of the recorded neuron. These hypothetical cases highlight how two very different direction 
vectors can elicit similar activity levels at the recorded location. Figure panels (A) through (C) adapted from Gandhi & 
Katnani, 2011. The same conceptual quandary remains even if the topographic map is updated to reflect unequal 
representations of upper and lower hemifields (Hafed & Chen, 2016).  D. Traditional single electrode approach into the SC 
(left) compared to an advanced recording technique with a multichannel laminar probe (right). In both cases, the insertion 
angle is orthogonal to the SC surface, yielding neuron(s) at only one location on the SC map (e.g., the location of the green 
dot in the previous panels). Figure panel adapted from Jagadisan & Gandhi, 2022. 
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Figure 2. Peri-event values of spiking activity and LFPs simultaneously recorded across 24 channels. A. The across-trials 
mean firing rates for all 15 functional channels recorded during an example session are plotted aligned to target onset (left) 
and saccade onset (right) to eight radially equidistant targets. Each colored trace represents the spiking activity on one 
channel averaged across all trials to a particular target. Subplots are rotated so that the preferred target direction of this 
population is displayed horizontal and rightward with respect to center. B. The across-trials mean LFP voltage values for all 
15 channels are plotted using the same conventions as the spiking activity data. 
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Figure 3. Linear discriminant classification of spiking and LFP activity. Sliding 100 ms windows of summed spike counts or 
average LFP voltage on each channel were used to train a linear discriminant analysis (LDA) model and test its ability to 
decode target direction. Mean (±SEM) across-session classifier performances for the spike count (black traces) and LFP 
classifiers (green traces) are plotted separately for each of eight target directions and aligned to target onset (left panels) or 
saccade onset (right panels). Chance level classifier performance was obtained by using shuffled class labels during the 
training phase. Performance values were grouped across sessions by aligning to each session’s preferred target direction 
(visualized here as the right middle panels), and the performance for each session and each target was baseline-subtracted 
before averaging. Values for each window are plotted aligned to the end of that window (e.g., performance of the classifier 
trained and tested on the 0 ms to 100 ms window following target onset is plotted at 100 ms on the x axis). 
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Figure 4. Spread of spatial direction discrimination across broad visual space. Summary polar plots of mean across-session 
classifier performance distribution across target directions during each epoch as defined in Methods for spiking (A) and LFP 
(B) activity. Spatial tuning of spiking activity is broader in the motor epoch than any other epoch. For LFPs, decoding 
performance is lower during the delay period but is comparable between the visual and motor epochs. 
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Figure 5. Linear discriminant classification of spiking and LFP activity: systematic variation of bin width. A. Classifiers were 
trained and tested on summed spike counts during windows of lengths ranging from 20 ms to 300 ms. Average 
performance over 50 bootstrapping iterations for each target direction and each window length condition are plotted using 
the same conventions as Figure 3A for one example session. Again, values are plotted aligned to the end of each window; 
therefore, each condition peaks in classification performance at different times but this is not the comparison of interest. 
Spike count-based classification is largely robust to window size during the transient visual and motor epochs (as indicated 
by the dark blue and green arrows at Target 1) but performance increases with increasing window sizes during the delay 
period. B. As in (A) but for average LFP voltage on each channel during windows of varying lengths. A decrease in 
performance with increasing window lengths can be seen during the motor epoch (indicated by dark blue and light green 
arrows at Target 1), but the opposite effect can be seen during the delay period. 
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Figure 6. Linear discriminant classification of spiking and LFP activity: systematic variation of population size. A. Classifiers 
were trained and tested on summed spike counts during 100 ms windows with randomly selected population sizes ranging 
from 1 to 17 channels. Average performance over 50 bootstrapping iterations for each target direction and each population 
size condition are plotted using the same conventions as Figure 3A for one example session. As population size increases, 
classification performance increases in a corresponding fashion. B. As in (A) but for classifiers based on average LFP voltage 
across a varied number of included channels (matched to the channels included in the spike count classifiers). LFP-based 
classifier performance also increases systematically as a function of population size. 
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Figure 7. Classification performance as a function of population size during four key epochs. The performance of spike 
count (black traces) and LFP (green traces) classifiers was evaluated through a systematic variation of population size 
(Figure 6). Here, the across-session average peak classification performance for each target during the visual (blue panels), 
early delay (light purple), late delay (dark purple), and motor (orange panels) epochs is plotted as a function of the number 
of channels included (from 1 to 𝑈; see Methods). During both the visual and motor epochs, increasing population size leads 
to a corresponding increase in direction discriminability, even for targets in the hemifield opposite the preferred direction. 
For spike count-based classifiers, performance in the delay period follows the same trend, whereas less consistency is 
observed in the performance of LFP-based classifiers during these epochs. 
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Figure 8. Comparison of direction encoding during the visual and motor epochs for each target. Peak decoding 
performance in the visual (x-axis) vs. motor (y-axis) epoch as defined in Methods for each target. Spike-based classifiers are 
indicated in black and LFP-based classifiers are indicated in green. Each session (N=18) contributes two points to each of the 
eight target subplots – one for spiking activity and another for LFP activity. Inset: Significant (paired t-test) differences in 
performance level during the visual and motor epochs for each target are represented, with p<0.05 indicated by a single 
asterisk, p<0.01 by double asterisks, and p<0.001 by triple asterisks. For spike-based classifiers, the performance is 
significantly different between epochs for all targets but one. For LFP-based classifiers, only targets far from the preferred 
direction have significantly different encoding across epochs. 
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Figure 9. Comparison of spatial encoding properties of spiking and LFP activity across epochs. A. Baseline-shifted 
classification performance on spiking (black) and LFP (green) activity during each of the four main epochs (as defined in 
Methods) for each target aligned to the preferred direction of the population. Mean across sessions (bold lines) as well as 
each session’s individual tuning curve (N=18, thin lines) are shown. Session-averaged traces are the same as the data shown 
in Figure 4. B. Differences in the amount of spatial information encoded between two signal modalities. Trapezoidal area 
under each observed tuning curve (AUC) shown in (A) was computed, and the LFP classifiers’ AUCs were subtracted from 
the spike count classifiers’ AUCs in a pairwise fashion for each session and epoch. The across-session mean difference in 
AUC between the two modalities (bold line) and individual session values (gray points) are plotted. Significant differences 
between spiking and LFP classifier distributions are shown with asterisks at the α=0.05 significance level (paired t-test; 
p<0.05 is indicated by a single, p<0.01 double, and p<0.001 triple asterisk). From the visual epoch, the encoding of spatial 
information is significantly different between spiking and LFP signals. C. The AUC during each epoch for each session (thin 
lines) along with the across-session mean AUC (bold lines) were computed after shifting each population’s decoding values 
such that the decoding performance was 1 for the target in the preferred direction (i.e., Target 1). This measure allows for a 
fair comparison of breadth of information across epochs. D. Grid of statistical differences (paired t-test) in tuning width 
across pairs of epochs computed separately for each signal modality. For spiking activity, the tuning width is only 
significantly different between the visual and motor epochs and between the late delay and motor epochs. For LFPs, the 
tuning width is significantly different across all epochs. 

 

 

 




















